• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Discrete Logarithm Problem in Finite Fields of Small Characteristic / Das diskrete Logarithmusproblem in endlichen Körpern kleiner Charakteristik

Zumbrägel, Jens 14 March 2017 (has links) (PDF)
Computing discrete logarithms is a long-standing algorithmic problem, whose hardness forms the basis for numerous current public-key cryptosystems. In the case of finite fields of small characteristic, however, there has been tremendous progress recently, by which the complexity of the discrete logarithm problem (DLP) is considerably reduced. This habilitation thesis on the DLP in such fields deals with two principal aspects. On one hand, we develop and investigate novel efficient algorithms for computing discrete logarithms, where the complexity analysis relies on heuristic assumptions. In particular, we show that logarithms of factor base elements can be computed in polynomial time, and we discuss practical impacts of the new methods on the security of pairing-based cryptosystems. While a heuristic running time analysis of algorithms is common practice for concrete security estimations, this approach is insufficient from a mathematical perspective. Therefore, on the other hand, we focus on provable complexity results, for which we modify the algorithms so that any heuristics are avoided and a rigorous analysis becomes possible. We prove that for any prime field there exist infinitely many extension fields in which the DLP can be solved in quasi-polynomial time. Despite the two aspects looking rather independent from each other, it turns out, as illustrated in this thesis, that progress regarding practical algorithms and record computations can lead to advances on the theoretical running time analysis -- and the other way around. / Die Berechnung von diskreten Logarithmen ist ein eingehend untersuchtes algorithmisches Problem, dessen Schwierigkeit zahlreiche Anwendungen in der heutigen Public-Key-Kryptographie besitzt. Für endliche Körper kleiner Charakteristik sind jedoch kürzlich erhebliche Fortschritte erzielt worden, welche die Komplexität des diskreten Logarithmusproblems (DLP) in diesem Szenario drastisch reduzieren. Diese Habilitationsschrift erörtert zwei grundsätzliche Aspekte beim DLP in Körpern kleiner Charakteristik. Es werden einerseits neuartige, erheblich effizientere Algorithmen zur Berechnung von diskreten Logarithmen entwickelt und untersucht, wobei die Laufzeitanalyse auf heuristischen Annahmen beruht. Unter anderem wird gezeigt, dass Logarithmen von Elementen der Faktorbasis in polynomieller Zeit berechnet werden können, und welche praktischen Auswirkungen die neuen Verfahren auf die Sicherheit paarungsbasierter Kryptosysteme haben. Während heuristische Laufzeitabschätzungen von Algorithmen für die konkrete Sicherheitsanalyse üblich sind, so erscheint diese Vorgehensweise aus mathematischer Sicht unzulänglich. Der Aspekt der beweisbaren Komplexität für DLP-Algorithmen konzentriert sich deshalb darauf, modifizierte Algorithmen zu entwickeln, die jegliche heuristische Annahme vermeiden und dessen Laufzeit rigoros gezeigt werden kann. Es wird bewiesen, dass für jeden Primkörper unendlich viele Erweiterungskörper existieren, für die das DLP in quasi-polynomieller Zeit gelöst werden kann. Obwohl die beiden Aspekte weitgehend unabhängig voneinander erscheinen mögen, so zeigt sich, wie in dieser Schrift illustriert wird, dass Fortschritte bei praktischen Algorithmen und Rekordberechnungen auch zu Fortentwicklungen bei theoretischen Laufzeitabschätzungen führen -- und umgekehrt.
2

Analýza útoků na asymetrické kryptosystémy / Analysis of attacks on asymmetric cryptosystems

Tvaroh, Tomáš January 2011 (has links)
This thesis analyzes various attacks on underlying computational problem of asymmetric cryptosystems. First part introduces two of the most used problems asymmetric cryptography is based on, which are integer factorization and computation of discrete logarithm. Algorithms for solving these problems are described and for each of them there is a discussion about when the use of this particular algorithm is appropriate and when it isn't. In the next part computational problems are related to algorithms RSA and ECC and it is shown, how solving the underlying problem enables us to crack the cypher. As a part of this thesis an application was developed that measures the efficiency of described attacks and by providing easy-to-understand enumeration of algorithm's steps it can be used to demonstrate how the attack works. Based on the results of performed analysis, most secure asymmetric cryptosystem is selected along with some recommendations regarding key pair generation.
3

MODERN CRYPTOGRAPHY

Lopez, Samuel 01 June 2018 (has links)
We live in an age where we willingly provide our social security number, credit card information, home address and countless other sensitive information over the Internet. Whether you are buying a phone case from Amazon, sending in an on-line job application, or logging into your on-line bank account, you trust that the sensitive data you enter is secure. As our technology and computing power become more sophisticated, so do the tools used by potential hackers to our information. In this paper, the underlying mathematics within ciphers will be looked at to understand the security of modern ciphers. An extremely important algorithm in today's practice is the Advanced Encryption Standard (AES), which is used by our very own National Security Agency (NSA) for data up to TOP SECRET. Another frequently used cipher is the RSA cryptosystem. Its security is based on the concept of prime factorization, and the fact that it is a hard problem to prime factorize huge numbers, numbers on the scale of 2^{2048} or larger. Cryptanalysis, the study of breaking ciphers, will also be studied in this paper. Understanding effective attacks leads to understanding the construction of these very secure ciphers.
4

Algebraic Tori in Cryptography

Alexander, Nicholas Charles January 2005 (has links)
Communicating bits over a network is expensive. Therefore, cryptosystems that transmit as little data as possible are valuable. This thesis studies several cryptosystems that require significantly less bandwidth than conventional analogues. The systems we study, called torus-based cryptosystems, were analyzed by Karl Rubin and Alice Silverberg in 2003 [RS03]. They interpreted the XTR [LV00] and LUC [SL93] cryptosystems in terms of quotients of algebraic tori and birational parameterizations, and they also presented CEILIDH, a new torus-based cryptosystem. This thesis introduces the geometry of algebraic tori, uses it to explain the XTR, LUC, and CEILIDH cryptosystems, and presents torus-based extensions of van Dijk, Woodruff, et al. [vDW04, vDGP<sup>+</sup>05] that require even less bandwidth. In addition, a new algorithm of Granger and Vercauteren [GV05] that attacks the security of torus-based cryptosystems is presented. Finally, we list some open research problems.
5

Algebraic Tori in Cryptography

Alexander, Nicholas Charles January 2005 (has links)
Communicating bits over a network is expensive. Therefore, cryptosystems that transmit as little data as possible are valuable. This thesis studies several cryptosystems that require significantly less bandwidth than conventional analogues. The systems we study, called torus-based cryptosystems, were analyzed by Karl Rubin and Alice Silverberg in 2003 [RS03]. They interpreted the XTR [LV00] and LUC [SL93] cryptosystems in terms of quotients of algebraic tori and birational parameterizations, and they also presented CEILIDH, a new torus-based cryptosystem. This thesis introduces the geometry of algebraic tori, uses it to explain the XTR, LUC, and CEILIDH cryptosystems, and presents torus-based extensions of van Dijk, Woodruff, et al. [vDW04, vDGP<sup>+</sup>05] that require even less bandwidth. In addition, a new algorithm of Granger and Vercauteren [GV05] that attacks the security of torus-based cryptosystems is presented. Finally, we list some open research problems.
6

The Discrete Logarithm Problem in Finite Fields of Small Characteristic

Zumbrägel, Jens 28 June 2016 (has links)
Computing discrete logarithms is a long-standing algorithmic problem, whose hardness forms the basis for numerous current public-key cryptosystems. In the case of finite fields of small characteristic, however, there has been tremendous progress recently, by which the complexity of the discrete logarithm problem (DLP) is considerably reduced. This habilitation thesis on the DLP in such fields deals with two principal aspects. On one hand, we develop and investigate novel efficient algorithms for computing discrete logarithms, where the complexity analysis relies on heuristic assumptions. In particular, we show that logarithms of factor base elements can be computed in polynomial time, and we discuss practical impacts of the new methods on the security of pairing-based cryptosystems. While a heuristic running time analysis of algorithms is common practice for concrete security estimations, this approach is insufficient from a mathematical perspective. Therefore, on the other hand, we focus on provable complexity results, for which we modify the algorithms so that any heuristics are avoided and a rigorous analysis becomes possible. We prove that for any prime field there exist infinitely many extension fields in which the DLP can be solved in quasi-polynomial time. Despite the two aspects looking rather independent from each other, it turns out, as illustrated in this thesis, that progress regarding practical algorithms and record computations can lead to advances on the theoretical running time analysis -- and the other way around. / Die Berechnung von diskreten Logarithmen ist ein eingehend untersuchtes algorithmisches Problem, dessen Schwierigkeit zahlreiche Anwendungen in der heutigen Public-Key-Kryptographie besitzt. Für endliche Körper kleiner Charakteristik sind jedoch kürzlich erhebliche Fortschritte erzielt worden, welche die Komplexität des diskreten Logarithmusproblems (DLP) in diesem Szenario drastisch reduzieren. Diese Habilitationsschrift erörtert zwei grundsätzliche Aspekte beim DLP in Körpern kleiner Charakteristik. Es werden einerseits neuartige, erheblich effizientere Algorithmen zur Berechnung von diskreten Logarithmen entwickelt und untersucht, wobei die Laufzeitanalyse auf heuristischen Annahmen beruht. Unter anderem wird gezeigt, dass Logarithmen von Elementen der Faktorbasis in polynomieller Zeit berechnet werden können, und welche praktischen Auswirkungen die neuen Verfahren auf die Sicherheit paarungsbasierter Kryptosysteme haben. Während heuristische Laufzeitabschätzungen von Algorithmen für die konkrete Sicherheitsanalyse üblich sind, so erscheint diese Vorgehensweise aus mathematischer Sicht unzulänglich. Der Aspekt der beweisbaren Komplexität für DLP-Algorithmen konzentriert sich deshalb darauf, modifizierte Algorithmen zu entwickeln, die jegliche heuristische Annahme vermeiden und dessen Laufzeit rigoros gezeigt werden kann. Es wird bewiesen, dass für jeden Primkörper unendlich viele Erweiterungskörper existieren, für die das DLP in quasi-polynomieller Zeit gelöst werden kann. Obwohl die beiden Aspekte weitgehend unabhängig voneinander erscheinen mögen, so zeigt sich, wie in dieser Schrift illustriert wird, dass Fortschritte bei praktischen Algorithmen und Rekordberechnungen auch zu Fortentwicklungen bei theoretischen Laufzeitabschätzungen führen -- und umgekehrt.
7

Points of High Order on Elliptic Curves : ECDSA

Kouchaki Barzi, Behnaz January 2016 (has links)
This master thesis is about Elliptic Curve Digital Signature Algorithm or ECDSA and two of the known attacks on this security system. The purpose of this thesis is to find points that are likely to be points of high order on an elliptic curve. If we have a point P of high order and if Q = mP, then we have a large set of possible values of m. Therefore it is hard to solve the Elliptic Curve Discrete Logarithm Problem or ECDLP. We have investigated on the time of finding the solution of ECDLP for a certain amount of elliptic curves based on the order of the point which is used to create the digital signatures by those elliptic curves. Method: Algebraic Structure of elliptic curves over finite fields and Discrete logarithms. This has been done by two types of attacks namely Baby Step, Giant Step and Pollard’s Rho and all of the programming parts has been done by means of Mathematica. Conclusion: We have come into a conclusion of having the probable good points which are the points of high order on elliptic curves through the mentioned attacks in which solving the ECDLP is harder if these points have been used in generating the digital signature. These probable good points can be estimated by means of a function we have come up with. The input of this function is the order of the point and the output is the time of finding the answer of ECDLP.
8

On Pollard's rho method for solving the elliptic curve discrete logarithm problem

Falk, Jenny January 2019 (has links)
Cryptosystems based on elliptic curves are in wide-spread use, they are considered secure because of the difficulty to solve the elliptic curve discrete logarithm problem. Pollard's rho method is regarded as the best method for attacking the logarithm problem to date, yet it is still not efficient enough to break an elliptic curve cryptosystem. This is because its time complexity is O(√n) and for uses in cryptography the value of n will be very large. The objective of this thesis is to see if there are ways to improve Pollard's rho method. To do this, we study some modifications of the original functions used in the method. We also investigate some different functions proposed by other researchers to see if we can find a version that will improve the performance. From the experiments conducted on these modifications and functions, we can conclude that we get an improvement in the performance for some of them.
9

Kryptoggraphie mit elliptischen Kurven

Pönisch, Jens 01 December 2014 (has links) (PDF)
Der Vortrag erläutert das Grundprinzip des Diffie-Hellman-Schlüsseltausches mithilfe des diskreten Logarithmus unter Zuhilfenahme elliptischer Kurven über endlichen Körpern.
10

On A Cubic Sieve Congruence Related To The Discrete Logarithm Problem

Vivek, Srinivas V 08 1900 (has links) (PDF)
There has been a rapid increase interest in computational number theory ever since the invention of public-key cryptography. Various attempts to solve the underlying hard problems behind public-key cryptosystems has led to interesting problems in computational number theory. One such problem, called the cubic sieve congruence problem, arises in the context of the cubic sieve method for solving the discrete logarithm problem in prime fields. The cubic sieve method requires a nontrivial solution to the Cubic Sieve Congruence (CSC)x3 y2z (mod p), where p is a given prime. A nontrivial solution must satisfy x3 y2z (mod p), x3 ≠ y2z, 1≤ x, y, z < pα , where α is a given real number ⅓ < α ≤ ½. The CSC problem is to find an efficient algorithm to obtain a nontrivial solution to CSC. This thesis is concerned with the CSC problem. Recently, the parametrization x y2z (mod p) and y υ3z (mod p) of CSC was introduced. We give a deterministic polynomial-time (O(ln3p) bit-operations) algorithm to determine, for a given υ, a nontrivial solution to CSC, if one exists. Previously it took Õ(pα) time to do this. We relate the CSC problem to the gap problem of fractional part sequences. We also show in the α = ½ case that for a certain class of primes the CSC problem can be solved deterministically Õ(p⅓) time compared to the previous best of Õ(p½). It is empirically observed that about one out of three primes are covered by this class, up to 109

Page generated in 0.07 seconds