• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • Tagged with
  • 143
  • 143
  • 143
  • 68
  • 57
  • 35
  • 32
  • 23
  • 19
  • 18
  • 18
  • 18
  • 15
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Classifying the Jacobian Groups of Adinkras

Bagheri, Aaron R 01 January 2017 (has links)
Supersymmetry is a theoretical model of particle physics that posits a symmetry between bosons and fermions. Supersymmetry proposes the existence of particles that we have not yet observed and through them, offers a more unified view of the universe. In the same way Feynman Diagrams represent Feynman Integrals describing subatomic particle behaviour, supersymmetry algebras can be represented by graphs called adinkras. In addition to being motivated by physics, these graphs are highly structured and mathematically interesting. No one has looked at the Jacobians of these graphs before, so we attempt to characterize them in this thesis. We compute Jacobians through the 11-cube, but do not discover any significant discernible patterns. We then dedicate the rest of our work to generalizing the notion of the Jacobian, specifically to be sensitive to edge directions. We conclude with a conjecture describing the form of the directed Jacobian of the directed $n$-topology. We hope for this work to be useful for theoretical particle physics and for graph theory in general.
12

Random Tropical Curves

Hlavacek, Magda L 01 January 2017 (has links)
In the setting of tropical mathematics, geometric objects are rich with inherent combinatorial structure. For example, each polynomial $p(x,y)$ in the tropical setting corresponds to a tropical curve; these tropical curves correspond to unbounded graphs embedded in $\R^2$. Each of these graphs is dual to a particular subdivision of its Newton polytope; we classify tropical curves by combinatorial type based on these corresponding subdivisions. In this thesis, we aim to gain an understanding of the likeliness of the combinatorial type of a randomly chosen tropical curve by using methods from polytope geometry. We focus on tropical curves corresponding to quadratics, but we hope to expand our exploration to higher degree polynomials.
13

Edge-Transitive Bipartite Direct Products

Crenshaw, Cameron M 01 January 2017 (has links)
In their recent paper ``Edge-transitive products," Hammack, Imrich, and Klavzar showed that the direct product of connected, non-bipartite graphs is edge-transitive if and only if both factors are edge-transitive, and at least one is arc-transitive. However, little is known when the product is bipartite. This thesis extends this result (in part) for the case of bipartite graphs using a new technique called "stacking." For R-thin, connected, bipartite graphs A and B, we show that A x B is arc-transitive if and only if A and B are both arc-transitive. Further, we show A x B is edge-transitive only if at least one of A, B is also edge-transitive, and give evidence that strongly suggests that in fact both factors must be edge-transitive.
14

Chromatic Polynomials and Orbital Chromatic Polynomials and their Roots

Ortiz, Jazmin 01 January 2015 (has links)
The chromatic polynomial of a graph, is a polynomial that when evaluated at a positive integer k, is the number of proper k colorings of the graph. We can then find the orbital chromatic polynomial of a graph and a group of automorphisms of the graph, which is a polynomial whose value at a positive integer k is the number of orbits of k-colorings of a graph when acted upon by the group. By considering the roots of the orbital chromatic and chromatic polynomials, the similarities and differences of these polynomials is studied. Specifically we work toward proving a conjecture concerning the gap between the real roots of the chromatic polynomial and the real roots of the orbital chromatic polynomial.
15

Permutation Groups and Puzzle Tile Configurations of Instant Insanity II

Justus, Amanda N 01 May 2014 (has links)
The manufacturer claims that there is only one solution to the puzzle Instant Insanity II. However, a recent paper shows that there are two solutions. Our goal is to find ways in which we only have one solution. We examine the permutation groups of the puzzle and use modern algebra to attempt to fix the puzzle. First, we find the permutation group for the case when there is only one empty slot at the top. We then examine the scenario when we add an extra column or an extra row to make the game a 4 × 5 puzzle or a 5 x 4 puzzle, respectively. We consider the possibilities when we delete a color to make the game a 3 × 3 puzzle and when we add a color, making the game a 5 × 5 puzzle. Finally, we determine if solution two is a permutation of solution one.
16

Runs of Identical Outcomes in a Sequence of Bernoulli Trials

Riggle, Matthew 01 April 2018 (has links)
The Bernoulli distribution is a basic, well-studied distribution in probability. In this thesis, we will consider repeated Bernoulli trials in order to study runs of identical outcomes. More formally, for t ∈ N, we let Xt ∼ Bernoulli(p), where p is the probability of success, q = 1 − p is the probability of failure, and all Xt are independent. Then Xt gives the outcome of the tth trial, which is 1 for success or 0 for failure. For n, m ∈ N, we define Tn to be the number of trials needed to first observe n consecutive successes (where the nth success occurs on trial XTn ). Likewise, we define Tn,m to be the number of trials needed to first observe either n consecutive successes or m consecutive failures. We shall primarily focus our attention on calculating E[Tn] and E[Tn,m]. Starting with the simple cases of E[T2] and E[T2,2], we will use a variety of techniques, such as counting arguments and Markov chains, in order to derive the expectations. When possible, we shall also provide closed-form expressions for the probability mass function, cumulative distribution function, variance, and other values of interest. Eventually we will work our way to general formulas for E[Tn] and E[Tn,m]. We will also derive formulas for conditional averages, and discuss how famous results from probability such as Wald’s Identity apply to our problem. Numerical examples will also be given in order to supplement the discussion and clarify the results.
17

A Bound on the Number of Spanning Trees in Bipartite Graphs

Koo, Cheng Wai 01 January 2016 (has links)
Richard Ehrenborg conjectured that in a bipartite graph G with parts X and Y, the number of spanning trees is at most the product of the vertex degrees divided by |X|⋅|Y|. We make two main contributions. First, using techniques from spectral graph theory, we show that the conjecture holds for sufficiently dense graphs containing a cut vertex of degree 2. Second, using electrical network analysis, we show that the conjecture holds under the operation of removing an edge whose endpoints have sufficiently large degrees. Our other results are combinatorial proofs that the conjecture holds for graphs having |X| ≤ 2, for even cycles, and under the operation of connecting two graphs by a new edge. We also make two new conjectures based on empirical data, each of which is stronger than Ehrenborg's conjecture.
18

BOUNDING THE NUMBER OF COMPATIBLE SIMPLICES IN HIGHER DIMENSIONAL TOURNAMENTS

Chandrasekhar, Karthik 01 January 2019 (has links)
A tournament graph G is a vertex set V of size n, together with a directed edge set E ⊂ V × V such that (i, j) ∈ E if and only if (j, i) ∉ E for all distinct i, j ∈ V and (i, i) ∉ E for all i ∈ V. We explore the following generalization: For a fixed k we orient every k-subset of V by assigning it an orientation. That is, every facet of the (k − 1)-skeleton of the (n − 1)-dimensional simplex on V is given an orientation. In this dissertation we bound the number of compatible k-simplices, that is we bound the number of k-simplices such that its (k − 1)-faces with the already-specified orientation form an oriented boundary. We prove lower and upper bounds for all k ≥ 3. For k = 3 these bounds agree when the number of vertices n is q or q + 1 where q is a prime power congruent to 3 modulo 4. We also prove some lower bounds for values k > 3 and analyze the asymptotic behavior.
19

Upset Paths and 2-Majority Tournaments

Alshaikh, Rana Ali 01 June 2016 (has links)
In 2005, Alon, et al. proved that tournaments arising from majority voting scenarios have minimum dominating sets that are bounded by a constant that depends only on the notion of what is meant by a majority. Moreover, they proved that when a majority means that Candidate A beats Candidate B when Candidate A is ranked above Candidate B by at least two out of three voters, the tournament used to model this voting scenario has a minimum dominating set of size at most three. This result gives 2-majority tournaments some significance among all tournaments and motivates us to investigate when a given tournament can be considered a 2-majority tournament. In this thesis, we prove, among other things, that the presence of an upset path in a tournament allows us to conclude the tournament is realizable as a 2-majority tournament.
20

PLANAR GRAPHS, BIPLANAR GRAPHS AND GRAPH THICKNESS

Hearon, Sean M 01 December 2016 (has links)
A graph is planar if it can be drawn on a piece of paper such that no two edges cross. The smallest complete and complete bipartite graphs that are not planar are K5 and K{3,3}. A biplanar graph is a graph whose edges can be colored using red and blue such that the red edges induce a planar subgraph and the blue edges induce a planar subgraph. In this thesis, we determine the smallest complete and complete bipartite graphs that are not biplanar.

Page generated in 0.1442 seconds