• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • Tagged with
  • 144
  • 144
  • 144
  • 69
  • 58
  • 35
  • 32
  • 23
  • 19
  • 18
  • 18
  • 18
  • 16
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Multicolor Ramsey and List Ramsey Numbers for Double Stars

Ruotolo, Jake 01 January 2022 (has links)
The core idea of Ramsey theory is that complete disorder is impossible. Given a large structure, no matter how complex it is, we can always find a smaller substructure that has some sort of order. For a graph H, the k-color Ramsey number r(H; k) of H is the smallest integer n such that every k-edge-coloring of Kn contains a monochromatic copy of H. Despite active research for decades, very little is known about Ramsey numbers of graphs. This is especially true for r(H; k) when k is at least 3, also known as the multicolor Ramsey number of H. Let Sn denote the star on n+1 vertices, the graph with one vertex of degree n (the center of Sn) and n vertices of degree 1. The double star S(n,m) is the graph consisting of the disjoint union of Sn and Sm together with an edge joining their centers. In this thesis, we study the multicolor Ramsey number of double stars. We obtain upper and lower bounds for r(S(n,m); k) when k is at least 3 and prove that r(S(n,m); k) = nk + m + 2 for k odd and n sufficiently large. We also investigate a new variant of the Ramsey number known as the list Ramsey number. Let L be an assignment of k-element subsets of the positive integers to the edges of Kn. A k-edge-coloring c of Kn is an L-coloring if c(e) belongs to L(e) for each edge e of Kn. The list Ramsey number rl(H; k) of H is the smallest integer n such that there is some L for which every L-coloring of Kn contains a monochromatic copy of H. In this thesis, we study rl(S(1,1); p) and rl(Sn; p), where p is an odd prime number.
32

Computational and Geometric Aspects of Linear Optimization

Xie, Feng 04 1900 (has links)
<p>This thesis deals with combinatorial and geometric aspects of linear optimization, and consists of two parts.</p> <p>In the first part, we address a conjecture formulated in 2008 and stating that the largest possible average diameter of a bounded cell of a simple hyperplane arrangement of n hyperplanes in dimension d is not greater than the dimension d. The average diameter is the sum of the diameters of each bounded cell divided by the total number of bounded cells, and then we consider the largest possible average diameter over all simple hyperplane arrangements. This quantity can be considered as an indication of the average complexity of simplex methods for linear optimization. Previous results in dimensions 2 and 3 suggested that a specific type of extensions, namely the covering extensions, of the cyclic arrangement might achieve the largest average diameter. We introduce a method for enumerating the covering extensions of an arrangement, and show that covering extensions of the cyclic arrangement are not always among the ones achieving the largest diameter.</p> <p>The software tool we have developed for oriented matroids computation is used to exhibit a counterexample to the hypothesized minimum number of external facets of a simple arrangement of n hyperplanes in dimension d; i.e. facets belonging to exactly one bounded cell of a simple arrangement. We determine the largest possible average diameter, and verify the conjectured upper bound, in dimensions 3 and 4 for arrangements defined by no more than 8 hyperplanes via the associated uniform oriented matroids formulation. In addition, these new results substantiate the hypothesis that the largest average diameter is achieved by an arrangement minimizing the number of external facets.</p> <p>The second part focuses on the colourful simplicial depth, i.e. the number of colourful simplices in a colourful point configuration. This question is closely related to the colourful linear programming problem. We show that any point in the convex hull of each of (d+1) sets of (d+1) points in general position in R<sup>d</sup> is contained in at least (d+1)<sup>2</sup>/2 simplices with one vertex from each set. This improves the previously established lower bounds for d>=4 due to Barany in 1982, Deza et al in 2006, Barany and Matousek in 2007, and Stephen and Thomas in 2008.</p> <p>We also introduce the notion of octahedral system as a combinatorial generalization of the set of colourful simplices. Configurations of low colourful simplicial depth correspond to systems with small cardinalities. This construction is used to find lower bounds computationally for the minimum colourful simplicial depth of a configuration, and, for a relaxed version of the colourful depth, to provide a simple proof of minimality.</p> / Doctor of Philosophy (PhD)
33

Two Generalizations of the Filippov Operation

Eryuzlu, Menevse 01 April 2016 (has links)
The purpose of this thesis is to generalize Filippov's operation, and to get more useful results. It includes two main parts: The C-Filippov operation for the finite and countable cases and the Filippov operation with different measures. In the first chapter, we give brief information about the importance of Filippov's operation, our goal and the ideas behind our generalizations. In the second chapter, we give some sufficient background notes. In the third chapter, we introduce the Filippov operation, explain how to calculate the Filippov of a function and give some sufficient properties of it. In the fourth chapter, we introduce a generalization of the Filippov operation, the C-Filippov, and give some of its properties which we need for the next chapter. In the fifth chapter, in the first main part, we discuss some properties of the C-Filippov for special cases and observe the differences and common properties between the Filippov and C-Filippov operations. Finally, in the sixth chapter, we present the other generalization of the Filippov operation which is Filippov with different measures. We observe the properties of the corresponding Filippovs when we know the relationship between the measures. We finish the thesis by summarizing our work and discussing future work.
34

New Perspectives of Quantum Analogues

Cai, Yue 01 January 2016 (has links)
In this dissertation we discuss three problems. We first show the classical q-Stirling numbers of the second kind can be expressed more compactly as a pair of statistics on a subset of restricted growth words. We extend this enumerative result via a decomposition of a new poset which we call the Stirling poset of the second kind. The Stirling poset of the second kind supports an algebraic complex and a basis for integer homology is determined. A parallel enumerative, poset theoretic and homological study for the q-Stirling numbers of the first kind is done. We also give a bijective argument showing the (q, t)-Stirling numbers of the first and second kind are orthogonal. In the second part we give combinatorial proofs of q-Stirling identities via restricted growth words. This includes new proofs of the generating function of q-Stirling numbers of the second kind, the q-Vandermonde convolution for Stirling numbers and the q-Frobenius identity. A poset theoretic proof of Carlitz’s identity is also included. In the last part we discuss a new expression for q-binomial coefficients based on the weighting of certain 01-permutations via a new bistatistic related to the major index. We also show that the bistatistics between the inversion number and major index are equidistributed. We generalize this idea to q-multinomial coefficients evaluated at negative q values. An instance of the cyclic sieving phenomenon related to flags of unitary spaces is also studied.
35

Polyhedral Problems in Combinatorial Convex Geometry

Solus, Liam 01 January 2015 (has links)
In this dissertation, we exhibit two instances of polyhedra in combinatorial convex geometry. The first instance arises in the context of Ehrhart theory, and the polyhedra are the central objects of study. The second instance arises in algebraic statistics, and the polyhedra act as a conduit through which we study a nonpolyhedral problem. In the first case, we examine combinatorial and algebraic properties of the Ehrhart h*-polynomial of the r-stable (n,k)-hypersimplices. These are a family of polytopes which form a nested chain of subpolytopes within the (n,k)-hypersimplex. We show that a well-studied unimodular triangulation of the (n,k)-hypersimplex restricts to a triangulation of each r-stable (n,k)-hypersimplex within. We then use this triangulation to compute the facet-defining inequalities of these polytopes. In the k=2 case, we use shelling techniques to devise a combinatorial interpretation of the coefficients of the h*-polynomials in terms of independent sets of certain graphs. From this, we then extract some results on unimodality. We also characterize the Gorenstein r-stable (n,k)-hypersimplices, and we conclude that these also have unimodal h*-polynomials. In the second case, for a graph G on p vertices we consider the closure of the cone of concentration matrices of G. The extreme rays of this cone, and their associated ranks, have applications in maximum likelihood estimation for the undirected Gaussian graphical model associated to G. Consequently, the extreme ranks of this cone have been well-studied. Yet, there are few graph classes for which all the possible extreme ranks are known. We show that the facet-normals of the cut polytope of G can serve to identify extreme rays of this nonpolyhedral cone. We see that for graphs without K5 minors each facet-normal of the cut polytope identifies an extreme ray in the cone, and we determine the rank of this extreme ray. When the graph is also series-parallel, we find that all possible extreme ranks arise in this fashion, thereby extending the collection of graph classes for which all the possible extreme ranks are known.
36

Hypergraph Capacity with Applications to Matrix Multiplication

Peebles, John Lee Thompson, Jr. 01 May 2013 (has links)
The capacity of a directed hypergraph is a particular numerical quantity associated with a hypergraph. It is of interest because of certain important connections to longstanding conjectures in theoretical computer science related to fast matrix multiplication and perfect hashing as well as various longstanding conjectures in extremal combinatorics. We give an overview of the concept of the capacity of a hypergraph and survey a few basic results regarding this quantity. Furthermore, we discuss the Lovász number of an undirected graph, which is known to upper bound the capacity of the graph (and in practice appears to be the best such general purpose bound). We then elaborate on some attempted generalizations/modifications of the Lovász number to undirected hypergraphs that we have tried. It is not currently known whether these attempted generalizations/modifications upper bound the capacity of arbitrary hypergraphs. An important method for proving lower bounds on hypergraph capacity is to exhibit a large independent set in a strong power of the hypergraph. We examine methods for this and show a barrier to attempts to usefully generalize certain of these methods to hypergraphs. We then look at cap sets: independent sets in powers of a certain hypergraph. We examine certain structural properties of them with the hope of finding ones that allow us to prove upper bounds on their size. Finally, we consider two interesting generalizations of capacity and use one of them to formulate several conjectures about connections between cap sets and sunflower-free sets.
37

A Discrete Approach to the Poincare-Miranda Theorem

Ahlbach, Connor Thomas 12 May 2013 (has links)
The Poincare-Miranda Theorem is a topological result about the existence of a zero of a function under particular boundary conditions. In this thesis, we explore proofs of the Poincare-Miranda Theorem that are discrete in nature - that is, they prove a continuous result using an intermediate lemma about discrete objects. We explain a proof by Tkacz and Turzanski that proves the Poincare-Miranda theorem via the Steinhaus Chessboard Theorem, involving colorings of partitions of n-dimensional cubes. Then, we develop a new proof of the Poincare-Miranda Theorem that relies on a polytopal generalization of Sperner's Lemma of Deloera - Peterson - Su. Finally, we extend these discrete ideas to attempt to prove the existence of a zero with the boundary condition of Morales.
38

On Independence, Matching, and Homomorphism Complexes

Hough, Wesley K. 01 January 2017 (has links)
First introduced by Forman in 1998, discrete Morse theory has become a standard tool in topological combinatorics. The main idea of discrete Morse theory is to pair cells in a cellular complex in a manner that permits cancellation via elementary collapses, reducing the complex under consideration to a homotopy equivalent complex with fewer cells. In chapter 1, we introduce the relevant background for discrete Morse theory. In chapter 2, we define a discrete Morse matching for a family of independence complexes that generalize the matching complexes of suitable "small" grid graphs. Using this matching, we determine the dimensions of the chain spaces for the resulting Morse complexes and derive bounds on the location of non-trivial homology groups. Furthermore, we determine the Euler characteristic for these complexes and prove that several of their homology groups are non-zero. In chapter 3, we introduce the notion of a homomorphism complex for partially ordered sets, placing particular emphasis on maps between chain posets and the Boolean algebras. We extend the notion of folding from general graph homomorphism complexes to the poset case, and we define an iterative discrete Morse matching for these Boolean complexes. We provide formulas for enumerating the number of critical cells arising from this matching as well as for the Euler characteristic. We end with a conjecture on the optimality of our matching derived from connections to 3-equal manifolds
39

Discrete Fractional Hermite-Hadamard Inequality

Arslan, Aykut 01 April 2017 (has links)
This thesis is comprised of three main parts: The Hermite-Hadamard inequality on discrete time scales, the fractional Hermite-Hadamard inequality, and Karush-Kuhn- Tucker conditions on higher dimensional discrete domains. In the first part of the thesis, Chapters 2 & 3, we define a convex function on a special time scale T where all the time points are not uniformly distributed on a time line. With the use of the substitution rules of integration we prove the Hermite-Hadamard inequality for convex functions defined on T. In the fourth chapter, we introduce fractional order Hermite-Hadamard inequality and characterize convexity in terms of this inequality. In the fifth chapter, we discuss convexity on n{dimensional discrete time scales T = T1 × T2 × ... × Tn where Ti ⊂ R , i = 1; 2,…,n are discrete time scales which are not necessarily periodic. We introduce the discrete analogues of the fundamental concepts of real convex optimization such as convexity of a function, subgradients, and the Karush-Kuhn-Tucker conditions. We close this thesis by two remarks for the future direction of the research in this area.
40

Stability of Linear Difference Systems in Discrete and Fractional Calculus

Er, Aynur 01 April 2017 (has links)
The main purpose of this thesis is to define the stability of a system of linear difference equations of the form, ∇y(t) = Ay(t), and to analyze the stability theory for such a system using the eigenvalues of the corresponding matrix A in nabla discrete calculus and nabla fractional discrete calculus. Discrete exponential functions and the Putzer algorithms are studied to examine the stability theorem. This thesis consists of five chapters and is organized as follows. In the first chapter, the Gamma function and its properties are studied. Additionally, basic definitions, properties and some main theorem of discrete calculus are discussed by using particular example. In the second chapter, we focus on solving the linear difference equations by using the undetermined coefficient method and the variation of constants formula. Moreover, we establish the matrix exponential function which is the solution of the initial value problems (IVP) by the Putzer algorithm.

Page generated in 0.1128 seconds