• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parking Functions and Related Combinatorial Structures.

Rattan, Amarpreet January 2001 (has links)
The central topic of this thesis is parking functions. We give a survey of some of the current literature concerning parking functions and focus on their interaction with other combinatorial objects; namely noncrossing partitions, hyperplane arrangements and tree inversions. In the final chapter, we discuss generalizations of both parking functions and the above structures.
2

Parking Functions and Related Combinatorial Structures.

Rattan, Amarpreet January 2001 (has links)
The central topic of this thesis is parking functions. We give a survey of some of the current literature concerning parking functions and focus on their interaction with other combinatorial objects; namely noncrossing partitions, hyperplane arrangements and tree inversions. In the final chapter, we discuss generalizations of both parking functions and the above structures.
3

Basis Enumeration of Hyperplane Arrangements up to Symmetries

Moss, Aaron 09 January 2012 (has links)
This thesis details a method of enumerating bases of hyperplane arrangements up to symmetries. I consider here automorphisms, geometric symmetries which leave the set of all points contained in the arrangement setwise invariant. The algorithm for basis enumeration described in this thesis is a backtracking search over the adjacency graph implied on the bases by minimum-ratio simplex pivots, pruning at bases symmetric to those already seen. This work extends Bremner, Sikiri c, and Sch urmann's method for basis enumeration of polyhedra up to symmetries, including a new pivoting rule for nding adjacent bases in arrangements, a method of computing automorphisms of arrangements which extends the method of Bremner et al. for computing automorphisms of polyhedra, and some associated changes to optimizations used in the previous work. I include results of tests on ACEnet clusters showing an order of magnitude speedup from the use of C++ in my implementation, an up to 3x speedup with a 6-core parallel variant of the algorithm, and positive results from other optimizations.
4

The Action Dimension of Artin Groups

Le, Giang T. 21 December 2016 (has links)
No description available.
5

Graph Laplacians, Nodal Domains, and Hyperplane Arrangements

Biyikoglu, Türker, Hordijk, Wim, Leydold, Josef, Pisanski, Tomaz, Stadler, Peter F. January 2002 (has links) (PDF)
Eigenvectors of the Laplacian of a graph G have received increasing attention in the recent past. Here we investigate their so-called nodal domains, i.e., the connected components of the maximal induced subgraphs of G on which an eigenvector \psi does not change sign. An analogue of Courant's nodal domain theorem provides upper bounds on the number of nodal domains depending on the location of \psi in the spectrum. This bound, however, is not sharp in general. In this contribution we consider the problem of computing minimal and maximal numbers of nodal domains for a particular graph. The class of Boolean Hypercubes is discussed in detail. We find that, despite the simplicity of this graph class, for which complete spectral information is available, the computations are still non-trivial. Nevertheless, we obtained some new results and a number of conjectures. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
6

Arrangements d'hyperplans / Hyperplane arrangements

Bailet, Pauline 11 June 2014 (has links)
Cette thèse étudie la fibre de Milnor d'un arrangement d'hyperplans complexe central, et l'opérateur de monodromie sur ses groupes de cohomologie. On s'intéresse à la problématique suivante : peut-on déterminer l'opérateur de monodromie, ou au moins les nombres de Betti de la fibre de Milnor, à partir de l'information contenue dans le treillis d'intersection de l'arrangement? On donne deux théorèmes d'annulation des sous-espaces propres non triviaux de l'opérateur de monodromie. Le premier résultat s'applique à une large classe d'arrangements, le deuxième à des arrangements de droites projectives tels qu'il existe une droite contenant exactement un point de multiplicité supérieure ou égale à trois. Dans le dernier chapitre, on considère la structure de Hodge mixte des groupes de cohomologie de la fibre de Milnor d'un arrangement central et essentiel dans l'espace complexe de dimension quatre. On donne ensuite l'équivalence entre la trivialité de la monodromie, la nullité des coefficients non entiers du spectre de l'arrangement, et la nullité des nombres de Hodge mixtes des groupes de cohomologie de la fibre de Milnor. / This Ph.D.thesis studies the Milnor fiber of a central complex hyperplane arrangement, and the monodromy operator on its cohomology groups. Our aim is to study the following open question: is it possible to determinate the monodromy operator, or at least the Betti numbers of the Milnor fiber, just using the information contained in the intersection lattice of the arrangement? We give two vanishing results on the non trivial eigenspaces of the monodromy. The first one applies to a large class of arrangements, and the second one to projective line arrangements with a line containing exactly one point of multiplicity greater or equal to three.Then we consider the mixed Hodge structure of the cohomology groups of the Milnor fiber, for a central and essential hyperplane arrangement in the complex space of dimension four. In this case, we give the equivalence between triviality of the monodromy, Tate properties, and nullity of the non integer spectrum's coefficients.Keywords: hyperplane arrangement, intersection lattice, Milnor fiber, monodromy.
7

Divisors on graphs, binomial and monomial ideals, and cellular resolutions

Shokrieh, Farbod 27 August 2014 (has links)
We study various binomial and monomial ideals arising in the theory of divisors, orientations, and matroids on graphs. We use ideas from potential theory on graphs and from the theory of Delaunay decompositions for lattices to describe their minimal polyhedral cellular free resolutions. We show that the resolutions of all these ideals are closely related and that their Z-graded Betti tables coincide. As corollaries, we give conceptual proofs of conjectures and questions posed by Postnikov and Shapiro, by Manjunath and Sturmfels, and by Perkinson, Perlman, and Wilmes. Various other results related to the theory of chip-firing games on graphs also follow from our general techniques and results.
8

Computational and Geometric Aspects of Linear Optimization

Xie, Feng 04 1900 (has links)
<p>This thesis deals with combinatorial and geometric aspects of linear optimization, and consists of two parts.</p> <p>In the first part, we address a conjecture formulated in 2008 and stating that the largest possible average diameter of a bounded cell of a simple hyperplane arrangement of n hyperplanes in dimension d is not greater than the dimension d. The average diameter is the sum of the diameters of each bounded cell divided by the total number of bounded cells, and then we consider the largest possible average diameter over all simple hyperplane arrangements. This quantity can be considered as an indication of the average complexity of simplex methods for linear optimization. Previous results in dimensions 2 and 3 suggested that a specific type of extensions, namely the covering extensions, of the cyclic arrangement might achieve the largest average diameter. We introduce a method for enumerating the covering extensions of an arrangement, and show that covering extensions of the cyclic arrangement are not always among the ones achieving the largest diameter.</p> <p>The software tool we have developed for oriented matroids computation is used to exhibit a counterexample to the hypothesized minimum number of external facets of a simple arrangement of n hyperplanes in dimension d; i.e. facets belonging to exactly one bounded cell of a simple arrangement. We determine the largest possible average diameter, and verify the conjectured upper bound, in dimensions 3 and 4 for arrangements defined by no more than 8 hyperplanes via the associated uniform oriented matroids formulation. In addition, these new results substantiate the hypothesis that the largest average diameter is achieved by an arrangement minimizing the number of external facets.</p> <p>The second part focuses on the colourful simplicial depth, i.e. the number of colourful simplices in a colourful point configuration. This question is closely related to the colourful linear programming problem. We show that any point in the convex hull of each of (d+1) sets of (d+1) points in general position in R<sup>d</sup> is contained in at least (d+1)<sup>2</sup>/2 simplices with one vertex from each set. This improves the previously established lower bounds for d>=4 due to Barany in 1982, Deza et al in 2006, Barany and Matousek in 2007, and Stephen and Thomas in 2008.</p> <p>We also introduce the notion of octahedral system as a combinatorial generalization of the set of colourful simplices. Configurations of low colourful simplicial depth correspond to systems with small cardinalities. This construction is used to find lower bounds computationally for the minimum colourful simplicial depth of a configuration, and, for a relaxed version of the colourful depth, to provide a simple proof of minimality.</p> / Doctor of Philosophy (PhD)
9

The broken circuit complex and the Orlik - Terao algebra of a hyperplane arrangement

Le, Van Dinh 17 February 2016 (has links)
My thesis is mostly concerned with algebraic and combinatorial aspects of the theory of hyperplane arrangements. More specifically, I study the Orlik-Terao algebra of a hyperplane arrangement and the broken circuit complex of a matroid. The Orlik-Terao algebra is a useful tool for studying hyperplane arrangements, especially for characterizing some non-combinatorial properties. The broken circuit complex, on the one hand, is closely related to the Orlik-Terao algebra, and on the other hand, plays a crucial role in the study of many combinatorial problem: the coefficients of the characteristic polynomial of a matroid are encoded in the f-vector of the broken circuit complex of the matroid. Among main results of the thesis are characterizations of the complete intersection and Gorenstein properties of the broken circuit complex and the Orlik-Terao algebra. I also study the h-vector of the broken circuit complex of a series-parallel network and relate certain entries of that vector to ear decompositions of the network. An application of the Orlik-Terao algebra in studying the relation space of a hyperplane arrangement is also included in the thesis.

Page generated in 0.0756 seconds