• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variétés caractéristiques et non formalité des fibres de Milnor

Zuber, Hugues 07 December 2009 (has links) (PDF)
Le but de cette thèse est l'étude de la fibre de Milnor associée à un complémentaire d'arrangement d'hyperplans. Il est montré par un exemple que cette variété n'est pas toujours formelle, ou même 1-formelle. La formalité est une propriété introduite dans les années 1970 dans le cadre de la théorie de l'homotopie rationnelle. Des avancées récentes ont identifié cette propriété comme critère particulièrement fin pour établir un lien entre variétés caractéristiques et variétés de résonance, associées à l'espace étudié. Ces deux types de variétés sont des invariants dont les définitions présentent beaucoup de points communs, mais dans des espaces différents. Un lien très fort - la variété de résonance est le cône tangent à l'origine de la variété caractéristique correspondante - avait été établi sous diverses hypothèses, que l'introduction de la 1-formalité permet d'élargir. C'est en montrant que pour l'exemple décrit dans cette thèse, ce lien n'existe pas, que l'on prouve que la variété considérée n'est pas formelle.
2

Arrangements d'hyperplans

Bailet, Pauline 11 June 2014 (has links) (PDF)
Cette thèse étudie la fibre de Milnor d'un arrangement d'hyperplans complexe central, et l'opérateur de monodromie sur ses groupes de cohomologie. On s'intéresse à la problématique suivante : peut-on déterminer l'opérateur de monodromie, ou au moins les nombres de Betti de la fibre de Milnor, à partir de l'information contenue dans le treillis d'intersection de l'arrangement? On donne deux théorèmes d'annulation des sous-espaces propres non triviaux de l'opérateur de monodromie. Le premier résultat s'applique à une large classe d'arrangements, le deuxième à des arrangements de droites projectives tels qu'il existe une droite contenant exactement un point de multiplicité supérieure ou égale à trois. Dans le dernier chapitre, on considère la structure de Hodge mixte des groupes de cohomologie de la fibre de Milnor d'un arrangement central et essentiel dans l'espace complexe de dimension quatre. On donne ensuite l'équivalence entre la trivialité de la monodromie, la nullité des coefficients non entiers du spectre de l'arrangement, et la nullité des nombres de Hodge mixtes des groupes de cohomologie de la fibre de Milnor.
3

Arrangements d'hyperplans / Hyperplane arrangements

Bailet, Pauline 11 June 2014 (has links)
Cette thèse étudie la fibre de Milnor d'un arrangement d'hyperplans complexe central, et l'opérateur de monodromie sur ses groupes de cohomologie. On s'intéresse à la problématique suivante : peut-on déterminer l'opérateur de monodromie, ou au moins les nombres de Betti de la fibre de Milnor, à partir de l'information contenue dans le treillis d'intersection de l'arrangement? On donne deux théorèmes d'annulation des sous-espaces propres non triviaux de l'opérateur de monodromie. Le premier résultat s'applique à une large classe d'arrangements, le deuxième à des arrangements de droites projectives tels qu'il existe une droite contenant exactement un point de multiplicité supérieure ou égale à trois. Dans le dernier chapitre, on considère la structure de Hodge mixte des groupes de cohomologie de la fibre de Milnor d'un arrangement central et essentiel dans l'espace complexe de dimension quatre. On donne ensuite l'équivalence entre la trivialité de la monodromie, la nullité des coefficients non entiers du spectre de l'arrangement, et la nullité des nombres de Hodge mixtes des groupes de cohomologie de la fibre de Milnor. / This Ph.D.thesis studies the Milnor fiber of a central complex hyperplane arrangement, and the monodromy operator on its cohomology groups. Our aim is to study the following open question: is it possible to determinate the monodromy operator, or at least the Betti numbers of the Milnor fiber, just using the information contained in the intersection lattice of the arrangement? We give two vanishing results on the non trivial eigenspaces of the monodromy. The first one applies to a large class of arrangements, and the second one to projective line arrangements with a line containing exactly one point of multiplicity greater or equal to three.Then we consider the mixed Hodge structure of the cohomology groups of the Milnor fiber, for a central and essential hyperplane arrangement in the complex space of dimension four. In this case, we give the equivalence between triviality of the monodromy, Tate properties, and nullity of the non integer spectrum's coefficients.Keywords: hyperplane arrangement, intersection lattice, Milnor fiber, monodromy.
4

Invariants motiviques dans les corps valués / Motivic invariants in valued fields

Forey, Arthur 07 December 2017 (has links)
Cette thèse est consacrée à définir et étudier des invariants motiviques associés aux ensembles semi-algébriques dans les corps valués. Ceux-ci sont les combinaisons booléennes d'ensembles définis par des inégalités valuatives. L'outil principal que nous utilisons est l'intégration motivique, une forme de théorie de la mesure à valeurs dans le groupe de Grothendieck des variétés définies sur le corps résiduel. Dans une première partie, on définit la notion de densité locale motivique. C'est un analogue valuatif du nombre de Lelong complexe, de la densité réelle de Kurdyka-Raby et de la densité p-adique de Cluckers-Comte-Loeser. C'est un invariant métrique à valeurs dans un localisé du groupe de Grothendieck des variétés. Notre résultat principal est que cet invariant se calcule sur le cône tangent muni de multiplicités motiviques. On établit un analogue de la formule de Cauchy-Crofton locale. On montre enfin que dans le cas d'une courbe plane, la densité motivique est égale à la somme des inverses des multiplicités des branches. L'objet de la seconde partie est de définir un morphisme d'anneau du groupe de Grothendieck des ensembles semi-algébriques sur un corps valué K vers le groupe de Grothendieck de la catégorie d'Ayoub des motifs rigides analytiques sur K. On montre qu'il étend le morphisme qui envoie la classe d'une variété algébrique sur la classe de son motif cohomologique à support compact. Cela fournit donc une notion virtuelle de motif cohomologique à support compact pour les variétés rigides analytiques. On montre également un théorème de dualité permettant de comparer le motif cohomologique de la fibre de Milnor analytique avec la fibre de Milnor motivique. / This thesis is devoted to define and study some motivic invariants associated to semialgebraic sets in valued fields. They are boolean combinations of sets defined by valuative inequalities. Our main tool is the theory of motivic integration, which is a kind of measure theory with values in the Grothendieck group of varieties defined over the residue field. In the first part, we define the notion of motivic local density. It is a valuative analog of complex Lelong number, Kurdyka-Raby real density and p-adic density of Cluckers- Comte-Loeser. It is a metric invariant with values in a localization of the Grothendieck group of varieties. Our main result is that it can be computed on the tangent cone with motivic multiplicities. We also establish an analog of the local Cauchy-Crofton formula. We finally show that the density of a germ of plane curve defined over the residue field is equal to the sum of the inverses of the multiplicities of the formal branches of the curve. The goal of the second part is to define a ring morphism from the Grothendieck group of semi-algebraic sets defined over a valued field K to the Grothendieck group of Ayoub’s categoryof rigid analytic motives over K. We show that it extends the morphism sending the class of an algebraic variety to the class of its cohomological motive with compact support. This gives a notion of virtual cohomological motive with compact support for rigid analytic varieties. We also show a duality theorem allowing us to compare the cohomological motive of the analytic Milnor fiber with the motivic Milnor fiber.
5

Invariants algébriques et topologiques des courbes et surfaces à singularités quotient / Algebraic and Topological Invariants of Curves and Surfaces with Quotient Singularities

Ortigas Galindo, Jorge 03 July 2013 (has links)
Le but principal de cette thèse de doctorat est l'étude de l'anneau de cohomologie du complément d'une courbe algébrique réduite dans le plan projectif pondéré complexe dont les composantes irréductibles sont des courbes rationnelles (avec ou sans points singuliers). En particulier, des représentants holomorphes (rationnels) sont obtenus pour les classes de cohomologie. Pour atteindre notre objectif, il est nécessaire de développer une théorie algébrique des courbes sur des surfaces avec des singularités quotient et d'étudier des techniques pour calculer certains invariants particulièrement utiles à travers des Q-résolutions plongées. / The main goal of this PhD thesis is the study of the cohomology ring of the complement of a reduced algebraic curve in the complex weighted projective plane whose irreducible components are all rational (possibly singular) curves. In particular, holomorphic (rational) representatives are found for the cohomology classes. In order to achieve our purpose one needs to develop an algebraic theory of curves on surfaces with quotient singularities and study techniques to compute some particularly useful invariants by means of embedded Q-resolutions.
6

Groupes projectifs et arrangements de droites / Projective groups and line arrangements

Wang, Zhenjian 19 June 2017 (has links)
Le but de cette thèse est de considérer différentes questions sur les groupes projectifs et sur les arrangements de droites dans le plan projectif. Un groupe projectif est un groupe qui est isomorphe au groupe fondamental d'une variété projective lisse complexe. Pour étudier les groupes projectifs, des techniques sophistiquées de topologie algébrique et de géométrie algébrique ont été développées pendant les dernières décennies, par exemple la théorie des variétés caractéristiques combinée avec la théorie de Hodge s'est montrée être un outil puissant. Les arrangements de droites dans le plan projectif ont une place centrale dans l'étude des groupes projectifs. En effet, il y a beaucoup de questions ouvertes sur les groupes projectifs, et la théorie des arrangements d'hyperplans, en particulier celle des arrangements de droites, qui est un domaine très actif de recherche, peut suggérer des solutions à ces problèmes. En outre, les problèmes sur les groupes fondamentaux de complémentaires des arrangements d'hyperplans peuvent être réduits au cas des arrangements de droites, en utilisant le bien connu Théorème de Zariski du type de Lefschetz. Assez souvent, pour étudier les groupes projectifs ou quasi-projectifs, on considère d'abord les arrangements de droites pour obtenir des idées intuitives. Dans cette thèse nous obtenons aussi des résultats d'intérêts indépendants, par exemple sur les morphismes définis sur un produit d'espaces projectifs dans le Chapitre 4, sur la fibre générale de certains morphismes dans le Chapitre 5 et les critères sur les surfaces de type générales au Chapitre 7. / The objective of this thesis is to investigate various questions about projective groups and line arrangements in the projective plane. A projective group is a group which is isomorphic to the fundamental group of a smooth complex projective variety. To study projective groups, sophisticated techniques in algebraic topology and algebraic geometry have been developed in the passed decades, for instance, the theory of cohomology jump loci, together with Hodge theory, has been proven a powerful tool. Line arrangements in the projective plane are of special interest in the study of projective groups. Indeed, there are many open questions related to projective groups, and the theory of hyperplane arrangements, and in particular that of line arrangements, which is quite an active area of research, may provide insights for these problems. Furthermore, problems concerning the fundamental groups of the complements of hyperplane arrangements can be reduced to the case of line arrangements, due to the celebrated Zariski theorem of Lefschetz type. Very often, in the study of projective groups or quasi-projective groups, one usually considers line arrangements first to get some intuitive ideas. In this thesis, we also prove some theorems that are of independent interest and can be used elsewhere, for instance, we prove properties concerning morphisms from products of projective spaces in Chapter 4, we show that some morphisms have generic connected fibers in Chapter 5 and we give criteria for a projective surface to be of general type in Chapter 7.

Page generated in 0.0551 seconds