• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Éliminations dans les corps valués / Eliminations in valued fields

Rideau, Silvain 09 December 2014 (has links)
Cette thèse est une contribution à la théorie des modèles des corps valués. Les principaux résultats de ce texte sont des résultats d’éliminations des quantificateurs et des imaginaires. Le premier chapitre contient une étude des imaginaires dans les extensions finies de Qp. On y démontre que ces corps ainsi que leurs ultraproduits éliminent les imaginaires dans le langage géométrique. On en déduit un résultat de rationalité uniforme pour les fonctions zêta associées aux familles de relations d’équivalences définissables dans les extensions finies de Qp. La motivation première du deuxième chapitre est l’étude de W(F_p^alg) en tant que corps valué analytique de différence. Plus généralement, on démontre un théorème d’élimination des quantificateurs de corps dans le langage RV pour les corps valués analytiques -Henséliens de caractéristique nulle. On donne aussi une axiomatisation de la théorie de W(F_p^alg) ainsi qu’une preuve qu’elle est NIP. Dans le troisième chapitre, on prouve la densité des types définissables dans certains enrichissements d’ACVF. On en déduit un critère pour l’élimination des imaginaires et la propriété d’extension invariante. Ce chapitre contient aussi des résultats abstraits sur les ensembles extérieurement définissables dans les théories NIP. Dans le dernier chapitre, les résultats du chapitre précédent sont appliqués à VDF, la modèle complétion des corps valués munis d’une dérivation qui préserve la valuation, pour obtenir l’élimination des imaginaires dans le langage géométrique ainsi que la densité des types définissables et la propriété d’extension invariante. Ce chapitre contient aussi des considérations sur les fonctions définissables, les types et les groupes définissables dans VDF. / This thesis is about the model theory of valued fields. The main results in this text are eliminationsof quantifiers and imaginaries. The first chapter is concerned with imaginaries in finite extensions of Qp. I show that these fields and their ultraproducts eliminate imaginaries in the geometric language. As a corollary, I obtain the uniform rationality of zeta functions associated to families of equivalence relations that aredefinable in finite extensions of Qp.The motivation for the second chapter is to study W(F_p^alg) as an analytic difference valued field. More generally, I show a field quantifier elimination theorem in the RV-language for -Henselian characteristic zero valued fields with an analytic structure. I also axiomatise the theory of W(F_p^alg) and I show that this theory is NIP.In the third chapter, I prove the density of definable types in certain enrichments of ACVF. From this result, I deduce a criterion for the elimination of imaginaries and the invariant property. This chapter also contains abstract results on externally definable sets in NIP theories. In the last chapter, the previous chapter is applied to VDF, the model completion of valued fields with a valuation preserving derivation, to obtain the elimination of imaginaries in the geometric language, as well as the density of definable types and the invariant extension property. This chapter also contains considerations about definable functions, types and definable groupes in VDF.
2

A study of skeleta in non-Archimedean geometry / Une étude des squelettes en géométrie non Archimédienne

Welliaveetil, John 30 June 2015 (has links)
Cette thèse s'appuie sur et reflète l'interaction entre la théorie des modèles et la géométrie de Berkovich. En utilisant les méthodes de Hrushovski et Loeser, nous montrerons que plusieurs phénomènes topologiques concernant des analytifications de variétés sont contrôlés par certains complexes simpliciaux contenus dans les analytifications. Ce travail comporte les résultats suivants. Soit $k$ un corps algébriquement clos et complet pour une valuation non-archimédienne non-triviale à valeurs réelles. 1) Soit $\phi : C' \to C$ un morphisme fini entre deux courbes projectives, lisses et irréductibles. Le morphisme $\phi$ induit un morphisme $\phi^{an} : C'^{an} \to C^{an}$ entre les deux analytifications. Nous construisons une paire de rétractions par déformations qui sont compatible pour le morphisme $\phi^{an}$. Les images des déformations $\Upsilon_{C'^{an}}$, $\Upsilon_{C^{an}$ sont des sous-espaces fermés de $C'^{an}$ and $C^{an}$ et homéomorphes à des graphes finis. Ce type de sous-espace est appelé \emph{squelette}. En outre, les espaces analytiques $C'^{an} \smallsetminus \Upsilon_{C'^{an}}$ et $C^{an} \smallsetminus \Upsilon_{C^{an}}$ se décomposent en une union disjointe de copies de disques unités de Berkovich. Un squelette $\Upsilon \subset C^{an}$ peut-être décomposé en un ensemble des sommets et un ensemble d'arêtes et on peut définir son genre $g(\Upsilon)$.Nous montrons que $g(\Upsilon)$ est un invariant bien défini de la courbe $C$. On appelle cet invariant $g^{an}(C)$. Le morphisme $\phi^{an}$ induira un morphisme $\Upsilon_{C'^{an}} \to \Upsilon_{C^{an}}$ entre les deux squelettes. Nous montrons que le genre du squelette $\Upsilon_{C'^{an}}$ peut être calculé en utilisant certains invariants associés aux points de $\Upsilon_{C^{an}}$. 2) Soit $\phi$ un endomorphisme fini de $\mathbb{P}^1_k$. Soit $x \in \mathbb{P}^1_k(k)$ et $f(x)$ le rayon de la plus grande boule de Berkovich de centre $x$, sur laquelle le morphisme $\phi^{an}$ est une fibration topologique. Nous voyons que la fonction $f : \mathbb{P}_k^1(k) \to \mathbb{R}_{\geq 0}$ est contrôlée par un graphe fini et non-vide contenu dans $\mathbb{P}^{1,an}_k$. Nous montrons que ce résultat peut être généralisé au cas d'un morphisme fini $\phi : V' \to V$ entre deux variétés intégrales, projectives avec $V$ normale. / This thesis is a reflection of the interaction between Berkovich geometry and model theory. Using the results of Hrushovski and Loeser, we show that several interesting topological phenomena that concern the analytifications of varieties are governed by certain finite simplicial complexes embedded in them. Our work consists of the following two sets of results. Let k be an algebraically closed non-Archimedean non trivially real valued field which is complete with respect to its valuation. 1) Let $\phi : C' \to C$ be a finite morphism between smooth projective irreducible $k$-curves.The morphism $\phi$ induces a morphism $\phi^{an} : C'^{an} \to C^{an}$ between the Berkovich analytifications of the curves. We construct a pair of deformation retractions of $C'^{an}$ and $C^{an}$ which are compatible with the morphism $\phi^{\mathrm{an}}$ andwhose images $\Upsilon_{C'^{an}}$, $\Upsilon_{C^{an}}$ are closed subspaces of $C'^{an}$, $C^{an}$ that are homeomorphic to finite metric graphs. We refer to such closed subspaces as skeleta.In addition, the subspaces $\Upsilon_{C'^{an}}$ and $\Upsilon_{C^{an}}$ are such that their complements in their respective analytifications decompose into the disjoint union of isomorphic copies of Berkovich open balls. The skeleta can be seen as the union of vertices and edges, thus allowing us to define their genus. The genus of a skeleton in a curve $C$ is in fact an invariant of the curve which we call $g^{an}(C)$. The pair of compatible deformation retractions forces the morphism $\phi^{an}$ to restrict to a map $\Upsilon_{C'^{an}} \to \Upsilon_{C^{an}}$. We study how the genus of $\Upsilon_{C'^{an}}$ can be calculated using the morphism $\phi^{an}_{|\Upsilon_{C'^{an}}$ and invariants defined on $\Upsilon_{C^{an}}$. 2) Let $\phi$ be a finite endomorphism of $\mathbb{P}^1_k$. Given a closed point $x \in \mathbb{P}^1_k$, we are interested in the radius $f(x)$ of the largest Berkovich open ball centered at $x$ over which the morphism $\phi^{\mathrm{an}}$ is a topological fibration. Interestingly, the function $f : \mathbb{P}_k^1(k) \to \mathbb{R}_{\geq 0}$ admits a strong tameness property in that it is controlled by a non-empty finite graph contained in $\mathbb{P}^{1,an}_k$. We show that this result can be generalized to the case of finite morphisms $\phi : V' \to V$ between integral projective $k$-varieties where $V$ is normal.
3

Invariants motiviques dans les corps valués / Motivic invariants in valued fields

Forey, Arthur 07 December 2017 (has links)
Cette thèse est consacrée à définir et étudier des invariants motiviques associés aux ensembles semi-algébriques dans les corps valués. Ceux-ci sont les combinaisons booléennes d'ensembles définis par des inégalités valuatives. L'outil principal que nous utilisons est l'intégration motivique, une forme de théorie de la mesure à valeurs dans le groupe de Grothendieck des variétés définies sur le corps résiduel. Dans une première partie, on définit la notion de densité locale motivique. C'est un analogue valuatif du nombre de Lelong complexe, de la densité réelle de Kurdyka-Raby et de la densité p-adique de Cluckers-Comte-Loeser. C'est un invariant métrique à valeurs dans un localisé du groupe de Grothendieck des variétés. Notre résultat principal est que cet invariant se calcule sur le cône tangent muni de multiplicités motiviques. On établit un analogue de la formule de Cauchy-Crofton locale. On montre enfin que dans le cas d'une courbe plane, la densité motivique est égale à la somme des inverses des multiplicités des branches. L'objet de la seconde partie est de définir un morphisme d'anneau du groupe de Grothendieck des ensembles semi-algébriques sur un corps valué K vers le groupe de Grothendieck de la catégorie d'Ayoub des motifs rigides analytiques sur K. On montre qu'il étend le morphisme qui envoie la classe d'une variété algébrique sur la classe de son motif cohomologique à support compact. Cela fournit donc une notion virtuelle de motif cohomologique à support compact pour les variétés rigides analytiques. On montre également un théorème de dualité permettant de comparer le motif cohomologique de la fibre de Milnor analytique avec la fibre de Milnor motivique. / This thesis is devoted to define and study some motivic invariants associated to semialgebraic sets in valued fields. They are boolean combinations of sets defined by valuative inequalities. Our main tool is the theory of motivic integration, which is a kind of measure theory with values in the Grothendieck group of varieties defined over the residue field. In the first part, we define the notion of motivic local density. It is a valuative analog of complex Lelong number, Kurdyka-Raby real density and p-adic density of Cluckers- Comte-Loeser. It is a metric invariant with values in a localization of the Grothendieck group of varieties. Our main result is that it can be computed on the tangent cone with motivic multiplicities. We also establish an analog of the local Cauchy-Crofton formula. We finally show that the density of a germ of plane curve defined over the residue field is equal to the sum of the inverses of the multiplicities of the formal branches of the curve. The goal of the second part is to define a ring morphism from the Grothendieck group of semi-algebraic sets defined over a valued field K to the Grothendieck group of Ayoub’s categoryof rigid analytic motives over K. We show that it extends the morphism sending the class of an algebraic variety to the class of its cohomological motive with compact support. This gives a notion of virtual cohomological motive with compact support for rigid analytic varieties. We also show a duality theorem allowing us to compare the cohomological motive of the analytic Milnor fiber with the motivic Milnor fiber.

Page generated in 0.0503 seconds