Spelling suggestions: "subject:"discrete mathematics"" "subject:"iscrete mathematics""
31 |
Automated Conjecturing Approach for BenzenoidsMuncy, David 01 January 2016 (has links)
Benzenoids are graphs representing the carbon structure of molecules, defined by a closed path in the hexagonal lattice. These compounds are of interest to chemists studying existing and potential carbon structures. The goal of this study is to conjecture and prove relations between graph theoretic properties among benzenoids. First, we generate conjectures on upper bounds for the domination number in benzenoids using invariant-defined functions. This work is an extension of the ideas to be presented in a forthcoming paper. Next, we generate conjectures using property-defined functions. As the title indicates, the conjectures we prove are not thought of on our own, rather generated by a process of automated conjecture-making. This program, named Cᴏɴᴊᴇᴄᴛᴜʀɪɴɢ, is developed by Craig Larson and Nico Van Cleemput.
|
32 |
An Algorithm to Generate Two-Dimensional Drawings of Conway Algebraic KnotsTung, Jen-Fu 01 May 2010 (has links)
The problem of finding an efficient algorithm to create a two-dimensional embedding of a knot diagram is not an easy one. Typically, knots with a large number of crossings will not nicely generate two-dimensional drawings. This thesis presents an efficient algorithm to generate a knot and to create a nice two-dimensional embedding of the knot. For the purpose of this thesis a drawing is “nice” if the number of tangles in the diagram consisting of half-twists is minimal. More specifically, the algorithm generates prime, alternating Conway algebraic knots in O(n) time where n is the number of crossings in the knot, and it derives a precise representation of the knot’s nice drawing in O(n) time (The rendering of the drawing is not O(n).). Central to the algorithm is a special type of rooted binary tree which represents a distinct prime, alternating Conway algebraic knot. Each leaf in the tree represents a crossing in the knot. The algorithm first generates the tree and then modifies such a tree repeatedly to reduce the number of its leaves while ensuring that the knot type associated with the tree is not modified. The result of the algorithm is a tree (for the knot) with a minimum number of leaves. This minimum tree is the basis of deriving a 4-regular plane map which represents the knot embedding and to finally draw the knot’s diagram.
|
33 |
Classifying the Jacobian Groups of AdinkrasBagheri, Aaron R 01 January 2017 (has links)
Supersymmetry is a theoretical model of particle physics that posits a symmetry between bosons and fermions. Supersymmetry proposes the existence of particles that we have not yet observed and through them, offers a more unified view of the universe. In the same way Feynman Diagrams represent Feynman Integrals describing subatomic particle behaviour, supersymmetry algebras can be represented by graphs called adinkras. In addition to being motivated by physics, these graphs are highly structured and mathematically interesting. No one has looked at the Jacobians of these graphs before, so we attempt to characterize them in this thesis. We compute Jacobians through the 11-cube, but do not discover any significant discernible patterns. We then dedicate the rest of our work to generalizing the notion of the Jacobian, specifically to be sensitive to edge directions. We conclude with a conjecture describing the form of the directed Jacobian of the directed $n$-topology. We hope for this work to be useful for theoretical particle physics and for graph theory in general.
|
34 |
Random Tropical CurvesHlavacek, Magda L 01 January 2017 (has links)
In the setting of tropical mathematics, geometric objects are rich with inherent combinatorial structure. For example, each polynomial $p(x,y)$ in the tropical setting corresponds to a tropical curve; these tropical curves correspond to unbounded graphs embedded in $\R^2$. Each of these graphs is dual to a particular subdivision of its Newton polytope; we classify tropical curves by combinatorial type based on these corresponding subdivisions. In this thesis, we aim to gain an understanding of the likeliness of the combinatorial type of a randomly chosen tropical curve by using methods from polytope geometry. We focus on tropical curves corresponding to quadratics, but we hope to expand our exploration to higher degree polynomials.
|
35 |
Edge-Transitive Bipartite Direct ProductsCrenshaw, Cameron M 01 January 2017 (has links)
In their recent paper ``Edge-transitive products," Hammack, Imrich, and Klavzar showed that the direct product of connected, non-bipartite graphs is edge-transitive if and only if both factors are edge-transitive, and at least one is arc-transitive. However, little is known when the product is bipartite. This thesis extends this result (in part) for the case of bipartite graphs using a new technique called "stacking." For R-thin, connected, bipartite graphs A and B, we show that A x B is arc-transitive if and only if A and B are both arc-transitive. Further, we show A x B is edge-transitive only if at least one of A, B is also edge-transitive, and give evidence that strongly suggests that in fact both factors must be edge-transitive.
|
36 |
Chromatic Polynomials and Orbital Chromatic Polynomials and their RootsOrtiz, Jazmin 01 January 2015 (has links)
The chromatic polynomial of a graph, is a polynomial that when evaluated at a positive integer k, is the number of proper k colorings of the graph. We can then find the orbital chromatic polynomial of a graph and a group of automorphisms of the graph, which is a polynomial whose value at a positive integer k is the number of orbits of k-colorings of a graph when acted upon by the group. By considering the roots of the orbital chromatic and chromatic polynomials, the similarities and differences of these polynomials is studied. Specifically we work toward proving a conjecture concerning the gap between the real roots of the chromatic polynomial and the real roots of the orbital chromatic polynomial.
|
37 |
Permutation Groups and Puzzle Tile Configurations of Instant Insanity IIJustus, Amanda N 01 May 2014 (has links)
The manufacturer claims that there is only one solution to the puzzle Instant Insanity II. However, a recent paper shows that there are two solutions. Our goal is to find ways in which we only have one solution. We examine the permutation groups of the puzzle and use modern algebra to attempt to fix the puzzle. First, we find the permutation group for the case when there is only one empty slot at the top. We then examine the scenario when we add an extra column or an extra row to make the game a 4 × 5 puzzle or a 5 x 4 puzzle, respectively. We consider the possibilities when we delete a color to make the game a 3 × 3 puzzle and when we add a color, making the game a 5 × 5 puzzle. Finally, we determine if solution two is a permutation of solution one.
|
38 |
Avoiding edge colorings of hypercubesJohansson, Per January 2019 (has links)
The hypercube Qn is the graph whose vertices are the ordered n-tuples of zeros and ones, where two vertices are adjacent iff they differ in exactly one coordinate. A partial edge coloring f of a graph G is a mapping from a subset of edges of G to a set of colors; it is called proper if no pair of adjacent edges share the same color. A (possibly partial and unproper) coloring f is avoidable if there exists a proper coloring g such that no edge has the same color under f and g. An unavoidable coloring h is called minimal if it would be avoidable by letting any colored edge turn noncolored. We construct a computer program to find all minimal unavoidable edge colorings of Q3 using up to 3 colors, and draw some conclusions for general Qn.
|
39 |
Runs of Identical Outcomes in a Sequence of Bernoulli TrialsRiggle, Matthew 01 April 2018 (has links)
The Bernoulli distribution is a basic, well-studied distribution in probability. In this thesis, we will consider repeated Bernoulli trials in order to study runs of identical outcomes. More formally, for t ∈ N, we let Xt ∼ Bernoulli(p), where p is the probability of success, q = 1 − p is the probability of failure, and all Xt are independent. Then Xt gives the outcome of the tth trial, which is 1 for success or 0 for failure. For n, m ∈ N, we define Tn to be the number of trials needed to first observe n consecutive successes (where the nth success occurs on trial XTn ). Likewise, we define Tn,m to be the number of trials needed to first observe either n consecutive successes or m consecutive failures.
We shall primarily focus our attention on calculating E[Tn] and E[Tn,m]. Starting with the simple cases of E[T2] and E[T2,2], we will use a variety of techniques, such as counting arguments and Markov chains, in order to derive the expectations. When possible, we shall also provide closed-form expressions for the probability mass function, cumulative distribution function, variance, and other values of interest. Eventually we will work our way to general formulas for E[Tn] and E[Tn,m]. We will also derive formulas for conditional averages, and discuss how famous results from probability such as Wald’s Identity apply to our problem. Numerical examples will also be given in order to supplement the discussion and clarify the results.
|
40 |
A Bound on the Number of Spanning Trees in Bipartite GraphsKoo, Cheng Wai 01 January 2016 (has links)
Richard Ehrenborg conjectured that in a bipartite graph G with parts X and Y, the number of spanning trees is at most the product of the vertex degrees divided by |X|⋅|Y|. We make two main contributions. First, using techniques from spectral graph theory, we show that the conjecture holds for sufficiently dense graphs containing a cut vertex of degree 2. Second, using electrical network analysis, we show that the conjecture holds under the operation of removing an edge whose endpoints have sufficiently large degrees.
Our other results are combinatorial proofs that the conjecture holds for graphs having |X| ≤ 2, for even cycles, and under the operation of connecting two graphs by a new edge.
We also make two new conjectures based on empirical data, each of which is stronger than Ehrenborg's conjecture.
|
Page generated in 0.0707 seconds