• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling, simulation, and analysis of grid connected dish-stirling solar power plants

Howard, Dustin F. 07 July 2010 (has links)
The percentage of renewable energy within the global electric power generation portfolio is expected to increase rapidly over the next few decades due to increasing concerns about climate change, fossil fuel costs, and energy security. Solar thermal energy, also known as concentrating solar power (CSP), is emerging as an important solution to new demands for clean, renewable electricity generation. Dish-Stirling (DS) technology, a form of CSP, is a relatively new player in the renewable energy market, although research in the technology has been ongoing now for nearly thirty years. The first large plant utilizing DS technology, rated at 1.5 MW, came online in January 2010 in Peoria, AZ, and plants rated for several hundred MW are in the planning stages. Increasing capacity of this technology within the utility grid requires extensive dynamic simulation studies to ensure that the power system maintains its safety and reliability in spite of the technological challenges that DS technology presents, particularly related to the intermittency of the energy source and its use of a non-conventional asynchronous generator. The research presented in this thesis attempts to fill in the gaps between the well established research on Stirling engines in the world of thermodynamics and the use of DS systems in electric power system applications, a topic which has received scant attention in publications since the emergence of this technology. DS technology uses a paraboloidal shaped dish of mirrors to concentrate sunlight to a single point. The high temperatures achieved at the focal point of the mirrors is used as a heat source for the Stirling engine, which is a closed-cycle, external heat engine. Invented by the Scottish clergyman Robert Stirling in 1816, the Stirling engine is capable of high efficiency and releases no emissions, making it highly compatible with concentrated solar energy. The Stirling engine turns a squirrel-cage induction generator, where electricity is delivered through underground cables from thousands of independent, autonomous 10-25 kW rated DS units in a large solar farm. A dynamic model of the DS system is presented in this thesis, including models of the Stirling engine working gas and mechanical dynamics. Custom FORTRAN code is written to model the Stirling engine dynamics within PSCAD/EMTDC. The Stirling engine and various other components of the DS system are incorporated into an electrical network, including first a single-machine, infinite bus network, and then a larger 12-bus network including conventional generators, loads, and transmission lines. An analysis of the DS control systems is presented, and simulation results are provided to demonstrate the system's steady state and dynamic behavior within these electric power networks. Potential grid interconnection requirements are discussed, including issues with power factor correction and low voltage ride-through, and simulation results are provided to illustrate the dish-Stirling system's capability for meeting such requirements.
2

Distribuční soustava Kypru - realizovatelnost obnovitelných zdrojů a přenos energie / Distribution system of Cyprus - feasibility of renewable energy sources and transfer of energy

Šimonová, Lucie January 2011 (has links)
Until a few decades ago few people could imagine that the photovoltaic, solar thermal and other power based on renewable resources, will become a reality. Today people from all over the world on the contrary try at full blast derive benefit from of all possible available source. Using sunlight as a source of energy is first enforced only for small devices such as calculators for charging the battery, but now we are able to produced energy from the sun to supply people around the world. Of course it is not possible supply consumer sector plus firm only from performances renewable power supply. Therefore endeavour is derive benefit from classical energy production at the same time with others power supply. The basic components of photovoltaic and solar thermal power are panels. The panels are made of different materials in different shapes and sizes. During production, the resulting effect looks in addition to costs associated with production. For photovoltaic and solar thermal power plant requires sufficient sunlight. The sunshine has biggest intensity on south of ours planets. Therefore endeavour is build lump these power station just in stand with bigger intensity sunshine. One of them is just Cyprus, too.

Page generated in 0.0876 seconds