• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 184
  • 26
  • 19
  • 16
  • 4
  • 1
  • 1
  • Tagged with
  • 288
  • 86
  • 71
  • 65
  • 58
  • 50
  • 44
  • 36
  • 31
  • 29
  • 25
  • 24
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

THE MASS AND SIZE DISTRIBUTION OF PLANETESIMALS FORMED BY THE STREAMING INSTABILITY. I. THE ROLE OF SELF-GRAVITY

Simon, Jacob B., Armitage, Philip J., Li, Rixin, Youdin, Andrew N. 05 May 2016 (has links)
We study the formation of planetesimals in protoplanetary disks from the gravitational collapse of solid over-densities generated via the streaming instability. To carry out these studies, we implement and test a particle-mesh self-gravity module for the ATHENA code that enables the simulation of aerodynamically coupled systems of gas and collisionless self-gravitating solid particles. Upon employment of our algorithm to planetesimal formation simulations, we find that (when a direct comparison is possible) the ATHENA simulations yield predicted planetesimal properties that agree well with those found in prior work using different numerical techniques. In particular, the gravitational collapse of streaming-initiated clumps leads to an initial planetesimal mass function that is well-represented by a power law, dN / dM(p) proportional to M-p(-p), with p similar or equal to 1.6 +/- 0.1, which equates to a differential size distribution of dN / dR(p) proportional to R-p(-q), with q similar or equal to 2.8 +/- 0.1. We find no significant trends with resolution from a convergence study of up to 512(3) grid zones and N-par approximate to 1.5 x 10(8) particles. Likewise, the power-law slope appears indifferent to changes in the relative strength of self-gravity and tidal shear, and to the time when (for reasons of numerical economy) self-gravity is turned on, though the strength of these claims is limited by small number statistics. For a typically assumed radial distribution of minimum mass solar nebula solids (assumed here to have dimensionless stopping time tau = 0.3), our results support the hypothesis that bodies on the scale of large asteroids or Kuiper Belt Objects could have formed as the high-mass tail of a primordial planetesimal population.
42

Shadows and spirals in the protoplanetary disk HD 100453

Benisty, M., Stolker, T., Pohl, A., de Boer, J., Lesur, G., Dominik, C., Dullemond, C. P., Langlois, M., Min, M., Wagner, K., Henning, T., Juhasz, A., Pinilla, P., Facchini, S., Apai, D., van Boekel, R., Garufi, A., Ginski, C., Ménard, F., Pinte, C., Quanz, S. P., Zurlo, A., Boccaletti, A., Bonnefoy, M., Beuzit, J. L., Chauvin, G., Cudel, M., Desidera, S., Feldt, M., Fontanive, C., Gratton, R., Kasper, M., Lagrange, A.-M., LeCoroller, H., Mouillet, D., Mesa, D., Sissa, E., Vigan, A., Antichi, J., Buey, T., Fusco, T., Gisler, D., Llored, M., Magnard, Y., Moeller-Nilsson, O., Pragt, J., Roelfsema, R., Sauvage, J.-F., Wildi, F. 21 December 2016 (has links)
Context. Understanding the diversity of planets requires studying the morphology and physical conditions in the protoplanetary disks in which they form. Aims. We aim to study the structure of the similar to 10 Myr old protoplanetary disk HD 100453, to detect features that can trace disk evolution and to understand the mechanisms that drive these features. Methods. We observed HD100453 in polarized scattered light with VLT/SPHERE at optical (0.6 mu m, 0.8 mu m) and near-infrared (1.2 mu m) wavelengths, reaching an angular resolution of similar to 0.02 '', and an inner working angle of similar to 0.09 ''. Results. We spatially resolve the disk around HD 100453, and detect polarized scattered light up to similar to 0.42 '' (similar to 48 au). We detect a cavity, a rim with azimuthal brightness variations at an inclination of similar to 38 degrees with respect to our line of sight, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of similar to 119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by similar to 72 degrees. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim induces an azimuthal variation of the scale height that can contribute to the brightness variations. Conclusions. Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. However, the origin of such a misalignment in HD100453, and of the spirals, is still unclear, and might be due to a yet-undetected massive companion inside the cavity, and on an inclined orbit. Observations over a few years will allow us to measure the spiral pattern speed, and determine if the shadows are fixed or moving, which may constrain their origin.
43

WL 17: A Young Embedded Transition Disk

Sheehan, Patrick D., Eisner, Josh A. 04 May 2017 (has links)
We present the highest spatial resolution ALMA observations to date of the Class I protostar WL 17 in the rho Ophiuchus L1688 molecular cloud complex, which show that it has a 12 au hole in the center of its disk. We consider whether WL 17 is actually a Class II disk being extincted by foreground material, but find that such models do not provide a good fit to the broadband spectral energy distribution (SED) and also require such high extinction that it would presumably arise from dense material close to the source, such as a remnant envelope. Self-consistent models of a disk embedded in a rotating collapsing envelope can nicely reproduce both the ALMA 3 mm observations and the broadband SED of WL 17. This suggests that WL 17 is a disk in the early stages of its formation, and yet even at this young age the inner disk has been depleted. Although there are multiple pathways for such a hole to be created in a disk, if this hole was produced by the formation of planets it could place constraints on the timescale for the growth of planets in protoplanetary disks.
44

Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

Hendler, Nathanial P., Mulders, Gijs D., Pascucci, Ilaria, Greenwood, Aaron, Kamp, Inga, Henning, Thomas, Menard, Francois, Dent, William R. F., Evans, Neal J., II 31 May 2017 (has links)
The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O I] 63 mu m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3-78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature-stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O I] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O I] 63 mu m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA-to establish if and how disk radii scale with stellar mass-should be pursued further.
45

The stability of a model galaxy.

Zang, Thomas Arthur January 1976 (has links)
Thesis. 1976. Ph.D.--Massachusetts Institute of Technology. Dept. of Mathematics. / Microfiche copy available in Archives and Science. / Bibliography: leaves 203-204. / Ph.D.
46

Growth of Planetesimals and the Formation of Debris Disks

Shannon, Andrew 31 August 2012 (has links)
At the edge of the Solar System lies the Kuiper Belt, a ring of leftover planetesimals from the era of planet formation. Collisions between the Kuiper Belt Objects produce dust grains, which absorb and re-radiate stellar radiation. The total amount of stellar radiation so absorbed is perhaps one part in ten million. Analogous to this, Sun-like stars at Sun-like ages commonly have dusty debris disks, which absorb and re-radiate as much as one part in ten thousand of the stellar radiation. We set out to understand this difference. In chapter 1, we outline the relevant observations and give a feel for the relevant physics. In chapter 2, we turn to the extrasolar debris disks. Using disks spanning a wide range of ages, we construct a pseudo-evolution sequence for extrasolar debris disks. We apply a straightforward collision model to this sequence, and find that the brightest disks are a hundred to a thousand times as massive as the Kuiper Belt, which causes the difference in dust luminosity. Current theoretical models of planetesimal growth predict very low efficiency in making large planetesimals, such that the Kuiper Belt should be the typical outcome of Minimum Mass Solar Nebula type disks. These models cannot produce the massive disks we find around other stars. We revisit these models in chapter 3, to understand the origin of this low efficiency. We confirm that these models, which begin with kilometer sized planetesimals, cannot produce the observed extrasolar debris disks. Instead, we propose an alternate model where most mass begins in centimeter sized grains, with some kilometer sized seed planetesimals. In this model, collisional cooling amongst the centimeter grains produces a new growth mode. We show in chapter 4 that this can produce the Kuiper Belt from a belt not much more massive than the Kuiper Belt today. We follow in chapter 5 by showing that this model can also produce the massive planetesimal populations needed to produce extrasolar debris disks.
47

Growth of Planetesimals and the Formation of Debris Disks

Shannon, Andrew 31 August 2012 (has links)
At the edge of the Solar System lies the Kuiper Belt, a ring of leftover planetesimals from the era of planet formation. Collisions between the Kuiper Belt Objects produce dust grains, which absorb and re-radiate stellar radiation. The total amount of stellar radiation so absorbed is perhaps one part in ten million. Analogous to this, Sun-like stars at Sun-like ages commonly have dusty debris disks, which absorb and re-radiate as much as one part in ten thousand of the stellar radiation. We set out to understand this difference. In chapter 1, we outline the relevant observations and give a feel for the relevant physics. In chapter 2, we turn to the extrasolar debris disks. Using disks spanning a wide range of ages, we construct a pseudo-evolution sequence for extrasolar debris disks. We apply a straightforward collision model to this sequence, and find that the brightest disks are a hundred to a thousand times as massive as the Kuiper Belt, which causes the difference in dust luminosity. Current theoretical models of planetesimal growth predict very low efficiency in making large planetesimals, such that the Kuiper Belt should be the typical outcome of Minimum Mass Solar Nebula type disks. These models cannot produce the massive disks we find around other stars. We revisit these models in chapter 3, to understand the origin of this low efficiency. We confirm that these models, which begin with kilometer sized planetesimals, cannot produce the observed extrasolar debris disks. Instead, we propose an alternate model where most mass begins in centimeter sized grains, with some kilometer sized seed planetesimals. In this model, collisional cooling amongst the centimeter grains produces a new growth mode. We show in chapter 4 that this can produce the Kuiper Belt from a belt not much more massive than the Kuiper Belt today. We follow in chapter 5 by showing that this model can also produce the massive planetesimal populations needed to produce extrasolar debris disks.
48

Design and Analysis of Efficient Static Broadcast Scheduling Strategies in Mobile Information Systems

Yang, Che-Nan 28 July 2000 (has links)
With the increasing acceptance of wireless technology, mechanisms to efficiently transmit information to wireless clients are of interest. The environment under consideration is asymmetric in that the information server has much more bandwidth available, as compared to the clients. It has been proposed that in such systems, the server should broadcast the information periodically. Acharya et al. have proposed the use of a periodic dissemination architecture in the context of mobile systems, called Broadcast Disks. Using Broadcast Disks can construct a memory hierarchy in which the highest level contains a few items and broadcasts them with high frequency while subsequent levels contain more and more items and broadcast them with less and less frequency. In this way, one can establish a trade-off between access time for high-priority data and that of the low-priority items, where access time means that the time elapsed from the moment a client submits a query to the receipt of data of his (her) interest on the broadcast channel. A broadcast schedule specifies when and where each data page is to be transmitted. (Note that the smallest logical unit of the broadcast data is called a data page which is made up by data items. The time required to broadcast a data page is referred to as a time slot.) However, based on Acharya et al.'s algorithm, some broadcast slots may be unused, which resulting in the waste of bandwidth and the increase of access time, if it is not possible to evenly divide the number of broadcast pages assigned on a disk into the required number of chunks. (Note that each disk is split into a sequence of smaller units called chunks.) Therefore, in this thesis, we propose two efficient broadcast programs in which no empty slots is wasted. The first one is the binary-number-based approach and the second one is the complementary approach. In the binary-number-based approach, the broadcast frequency must be restricted to a value of 2^n , n¡Ù0, i.e. 1, 2, 4, 8..., etc; while in the complementary approach, there is no restriction on the broadcast frequency. From our performance analysis and simulation, we show that both of our proposed two approaches generate a small number of slots in one broadcast cycle (i.e., a shorter broadcast cycle) and shorter mean access time than Acharya et al. algorithm. Moreover, our first approach (the binary-number-based approach) requires a smaller number of slots in one broadcast cycle and shorter mean access time than the second approach (the complementary approach); however, there is some restriction on the chosen frequency in the first approach. Therefore, each of our proposed approaches has its own advantages and applicable domains, and both of them can avoid the wasteness of bandwidth and reduce the waiting time of clients.
49

Structure formation through magnetohydrodynamical instabilities in protoplanetary and accretion disks /

Noguchi, Koichi, January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references (leaves 84-91). Available also in a digital version from Dissertation Abstracts.
50

Tracing the CO “ice line'' in an MRI-active protoplanetary disk with rare CO isotopologues

Yu, Mo, active 2013 03 December 2013 (has links)
The properties of planet-forming midplanes of protostellar disks remain largely unprobed by observations due to the high optical depth of common molecular lines and continuum. However, rotational emission lines from rare isotopologues may have optical depth near unity in the vertical direction, so that the lines are strong enough to be detected, yet remain transparent enough to trace the disk midplane. In this thesis, we present a chemical model of an MRI-active protoplanetary disk including different C, O isotopes and detailed photochemical reactions. The CO condensation front is found to be at 1.5 AU on the disk midplane around a solar like star, and its location remains almost unchanged during 3Myr of evolution. The optical depth of low-order rotational lines of C¹⁷O are around unity, which suggests it may be possible to see into the disk midplane using C¹⁷O. Such ALMA observations would provide estimates of the disk midplane temperature if the CO ice lines were spatially or spectrally resolved. With our computed C¹⁷O/H₂ abundance ratio, one would also be able to measure the disk masses by measuring the intensity of gas emission. / text

Page generated in 0.0428 seconds