• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 184
  • 26
  • 19
  • 16
  • 4
  • 1
  • 1
  • Tagged with
  • 288
  • 86
  • 71
  • 65
  • 58
  • 50
  • 44
  • 36
  • 31
  • 29
  • 25
  • 24
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks

Mulders, Gijs D., Pascucci, Ilaria, Manara, Carlo F., Testi, Leonardo, Herczeg, Gregory J., Henning, Thomas, Mohanty, Subhanjoy, Lodato, Giuseppe 20 September 2017 (has links)
In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit M-dust-M star and M-acc-M star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant alpha viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in M-dust and M-acc is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.
82

Imaging Planet Formation Inside the Diffraction Limit

Sallum, Stephanie Elise, Sallum, Stephanie Elise January 2017 (has links)
For decades, astronomers have used observations of mature planetary systems to constrain planet formation theories, beginning with our own solar system and now the thousands of known exoplanets. Recent advances in instrumentation have given us a direct view of some steps in the planet formation process, such as large-scale protostar and protoplanetary disk features and evolution. However, understanding the details of how planets accrete and interact with their environment requires direct observations of protoplanets themselves. Transition disks, protoplanetary disks with inner clearings that may be caused by forming planets, are the best targets for these studies. Their large distances, compared to the stars normally targeted for direct imaging of exoplanets, make protoplanet detection difficult and necessitate novel imaging techniques. In this dissertation, I describe the results of using non-redundant masking (NRM) to search for forming planets in transition disk clearings. I first present a data reduction pipeline that I wrote to this end, using example datasets and simulations to demonstrate reduction and imaging optimizations. I discuss two transition disk NRM case studies: T Cha and LkCa 15. In the case of T Cha, while we detect significant asymmetries, the data cannot be explained by orbiting companions. The fluxes and orbital motion of the LkCa 15 companion signals, however, can be naturally explained by protoplanets in the disk clearing. I use these datasets and simulated observations to illustrate the effects of scattered light from transition disk material on NRM protoplanet searches. I then demonstrate the utility of the dual-aperture Large Binocular Telescope Interferometer's NRM mode on the bright B[e] star MWC 349A. I discuss the implications of this work for planet formation studies as well as future prospects for NRM and related techniques on next generation instruments.
83

A Thermodynamic View of Dusty Protoplanetary Disks

Lin, Min-Kai, Youdin, Andrew N. 08 November 2017 (has links)
Small solids embedded in gaseous protoplanetary disks are subject to strong dust-gas friction. Consequently, tightly coupled dust particles almost follow the gas flow. This near conservation of the dust-to-gas ratio along streamlines is analogous to the near conservation of entropy along flows of (dust-free) gas with weak heating and cooling. We develop this thermodynamic analogy into a framework to study dusty gas dynamics in protoplanetary disks. We show that an isothermal dusty gas behaves like an adiabatic pure gas, and that finite dust-gas coupling may be regarded as effective heating/cooling. We exploit this correspondence to deduce that (1) perfectly coupled, thin dust layers cannot cause axisymmetric instabilities; (2) radial dust edges are unstable if the dust is vertically well-mixed; (3) the streaming instability necessarily involves a gas pressure response that lags behind dust density; and (4) dust-loading introduces buoyancy forces that generally stabilize the vertical shear instability associated with global radial temperature gradients. We also discuss dusty analogs of other hydrodynamic processes (e.g., Rossby wave instability, convective overstability, and zombie vortices) and how to simulate dusty protoplanetary disks with minor tweaks to existing codes for pure gas dynamics.
84

Des disques proto-planétaires aux disques de débris : étude des disques hybrides : observations dans le domaine millimétrique / From proto-planetary disks to debris disks : study of hybrid disks

Pericaud, Jessica 15 September 2016 (has links)
L"étude de la transition entre les disques proto-planétaires riches en gaz et les disques de débris, dans lesquels le gaz a disparu au bout de quelques millions d'année, est essentielle pour contraindre les mécanismes de formation planétaire. De plus en plus de disques de débris riches en gaz sont détectés. Certains de ces disques possèdent même des caractéristiques qui laissent présumer que le gaz y est d'origine primordiale à la différence de la poussière. C'est à ces diques hybrides que je m'intéresse tout particulièrement dans cette thèse. Grâce aux interféromètres ALMA et NOEMA, j'ai pu observer en détails le disque de débris autour de l'étoile HD 141569, de type spectral A0V, âgée d'une dizaine de millions d'années. Mes observations révèlent un disque de gaz d'origine primordiale en cours de dissipation, ce qui fait de ce disque un système hybride. La poussière millimétrique y a aussi évolué, puisque son émission est faible et possède un indice spectral caractéristique de grains qui ont grossi. Afin de détecter de nouveaux disques hybrides, j'ai observé le gaz CO dans 25 disques de débris avec APEX et de 30 m de l'IRAM. Autour de HD 23642, le gaz semble être détecté à 4 sigma et pourrait correspondre à un disque singulier, puisqu'il entoure une binaire de l'amas Pléiades, dont l'âge est estimé à 125-130 millions d'années. Pour différents stades d'évolution des disques, l'émission du gaz et de la poussière est corrélée sauf pour les disques hybrides dont le rapport de flux est plus élevé, peut-être à cause une évolution rapide de la poussière. Il reste à savoir si cette phase est généralisable à tous les disques pour comprendre les imolications de ce phénomène. / The study of the transition between proto-planetary gas-rich disks and debris disks, where gas has disappeared in a few millions years, is crucial to constrain the planet formation mechanisms. More ans more gas-rich debris disks are detected. I have studied some of those disks where observations suggest that gas is still primordial. Thanks to radio interferometers suche as ALMA and NOEMA, i have observed in details the debris disk around the ten millions year okd HD 141569 star, of spectral type A0V. My observations reveal the gas disk is primordial and is dissipating, which makes the disk a hybrid system. The milimeter dust has also evolved, since its emission is weak and has e spectral index beta typical of large grains. To detect more hybrid disks, i have observed th CO gas in 25 disks with APEX and the IRAM 30 m. Around HD 23642, CO emission is detected at 4 sigma and coukd correspond to a peculiar disk, since it surrounds binary stars in the Pleiades cluster, which age is estimate around 125-130 millions years. The emission of the gas and dust is correlated for all types of disks but hybrids, where the high flux ratio might be due to a rapid dust evolution. It remains to know whether this phase is common to all disks to understand the implications of this phenomenon.
85

Final implementation of an improved OPC data logging system in an in a automation environment

Bothma, B.C., Vermaak, H.J. January 2011 (has links)
Published Article / This paper will discuss the final implementation of an Improved OPC data logging system and its improvements over the original. The improved solution focused on the hardware, software and administrative components of the system; taking the reliability and performance of each component into consideration. The software components include the database, the data acquisition and logging client application (DALC) and the various OPC servers; the hardware component includes the servers that will run the software components, power management and Redundant Array of Independents Disks (RAID) technologies; and the administrative component includes implementing automated routines to backup the important data and archive old logs.
86

Simulation methods for optical disk drive functions.

DeVore, Scott Lawrence. January 1988 (has links)
Computer simulations of the optical servo functions of optical disk drives are developed and compared with experimental results. The focus control servo is investigated first, with emphasis on the astigmatic focus detection method. A paraxial ray trace, enhanced to allow tolerance studies of tilted and decentered surfaces, is used to calculate the size and orientation of an astigmatic blur on a quadrant photodetector as a function of focus error. The resulting irradiance distribution is integrated over the detector elements and processed to yield typical focus servo signals. A method for simulating generalized astigmatic focus systems, independent of a particular design, is also shown. The simulation results are used to derive normalized tolerance curves for detector misalignment and spot motion. Alignment diagnostics based on the servo signals are also presented. A wavefront aberration model is also developed and used to investigate the focus servo's performance in the presence of common aberrations. Simulations based on diffraction theory are used to investigate the radial tracking servo. Both scalar and vector diffraction theories are considered. The scalar theory is found to be adequate in most cases, while offering a large advantage in computational efficiency. A model for computing the signals detected by scanning the microscopic features of the disk is developed using the optical cross transfer function that describes the imaging characteristics of partially coherent systems. This model is used to investigate push-pull and three beam tracking. Aberrations, data patterns, detector misalignment, and pregroove profile are all examined for their effects on the servo signals. Crosstalk between the focus and tracking error detection is also briefly considered, and a possible extension of the radial tracking servo model to investigate this phenomenon is suggested.
87

Evolution and Variability of Circumstellar Material around Young Stellar Objects

Flaherty, Kevin January 2011 (has links)
Using multi-wavelength and multi-epoch observations we examine the evolution of circumstellar disks around pre-main sequence stars from massive, optically thick flared disks to wispy debris disks. We examine a young cluster of nearby stars, identifying likely members and studying dust properties using 3-24μm photometry and accretion rates using optical spectroscopy. We find that 79% of the stars have disks and that almost all of the stars with disks are actively accreting. The stars that show evidence for evolution in their dust properties also exhibit a decrease in the accretion activity suggesting that the evolution of the dust and gas is closely connected. Focusing on a sub-sample of transition disks we study the source of recently discovered infrared variability and whether it can be used to further our understanding of disk structure. We are particularly interested in sources that show a ’seesaw’ behavior in their SED in which the short wavelength infrared flux increases while the long wavelength flux decreases causing the SED to pivot about one wavelength. We develop simple geometric models of disks with nonaxisymmetric structure and find that the precession of this structure is not able to reproduce the strength or the wavelength dependence of observed infrared variability while a model with an inner warp whose scale height rapidly varies is much more successful. We follow this up with detailed observations covering a wide range of wavelengths from optical to mid-infrared of six transition disks in order to better understand the physical source of the variability. We find that the variability is consistent with a variable scale height of the inner disk, finding direct evidence for this effect in two transition disks. Contemporaneous measures of the infrared flux and the accretion rate find in some cases a correlation between these two properties, although in none of our stars is it likely that the accretion rate variability is the source of the infrared variability. The most likely cause is either a companion embedded in the disk or a dynamic interface between the stellar magnetic field and the disk.
88

The application of neural network techniques to magnetic and optical inverse problems

Jones, Huw Vaughan January 2000 (has links)
No description available.
89

An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets

Engelhardt, Toni, Jedicke, Robert, Vereš, Peter, Fitzsimmons, Alan, Denneau, Larry, Beshore, Ed, Meinke, Bonnie 27 February 2017 (has links)
We derived 90% confidence limits (CLs) on the interstellar number density (rho(CL)(IS)) of interstellar objects (ISOs; comets and asteroids) as a function of the slope of their size-frequency distribution (SFD) and limiting absolute magnitude. To account for gravitational focusing, we first generated a quasi-realistic ISO population to similar to 750 au from the Sun and propagated it forward in time to generate a steady state population of ISOs with heliocentric distance <50 au. We then simulated the detection of the synthetic ISOs using pointing data for each image and average detection efficiencies for each of three contemporary solar system surveys-Pan-STARRS1, the Mt. Lemmon Survey, and the Catalina Sky Survey. These simulations allowed us to determine the surveys' combined ISO detection efficiency under several different but realistic modes of identifying ISOs in the survey data. Some of the synthetic detected ISOs had eccentricities as small as 1.01, which is in the range of the largest eccentricities of several known comets. Our best CL of rho(CL)(SI) = 1.4 x 10(-4) au(-3) implies that the expectation that extra-solar systems form like our solar system, eject planetesimals in the same way, and then distribute them throughout the Galaxy, is too simplistic, or that the SFD or behavior of ISOs as they pass through our solar system is far from expectation.
90

The abundance and thermal history of water ice in the disk surrounding HD 142527 from the DIGIT Herschel Key Program

Min, M., Bouwman, J., Dominik, C., Waters, L. B. F. M., Pontoppidan, K. M., Hony, S., Mulders, G. D., Henning, Th., van Dishoeck, E. F., Woitke, P., Evans II, Neal J., Team, The DIGIT 29 August 2016 (has links)
Context. The presence or absence of ice in protoplanetary disks is of great importance to the formation of planets. By enhancing solid surface density and increasing sticking efficiency, ice catalyzes the rapid formation of planetesimals and decreases the timescale of giant planet core accretion. Aims. In this paper, we analyze the composition of the outer disk around the Herbig star HD 142527. We focus on the composition of water ice, but also analyze the abundances of previously proposed minerals. Methods. We present new Herschel far-infrared spectra and a re-reduction of archival data from the Infrared Space Observatory (ISO). We modeled the disk using full 3D radiative transfer to obtain the disk structure. Also, we used an optically thin analysis of the outer disk spectrum to obtain firm constraints on the composition of the dust component. Results. The water ice in the disk around HD 142527 contains a large reservoir of crystalline water ice. We determine the local abundance of water ice in the outer disk (i.e., beyond 130AU). The re-reduced ISO spectrum differs significantly from that previously published, but matches the new Herschel spectrum at their common wavelength range. In particular, we do not detect any significant contribution from carbonates or hydrous silicates, in contrast to earlier claims. Conclusions. The amount of water ice detected in the outer disk requires similar to 80% of oxygen atoms. This is comparable to the water ice abundance in the outer solar system, comets, and dense interstellar clouds. The water ice is highly crystalline while the temperatures where we detect it are too low to crystallize the water on relevant timescales. We discuss the implications of this finding.

Page generated in 0.029 seconds