Spelling suggestions: "subject:"dispersion axiale"" "subject:"ispersion axiale""
1 |
Étude de la dispersion axiale de matière dans un lit fixe.Lasson, Pierre, January 1900 (has links)
Th. doct.-ing.--Grenoble, I.N.P., 1985.
|
2 |
Méthodologies pour la caractérisation hydrodynamique et l'extrapolation de réacteurs intensifiés millistructurés / Hydrodynamic characterization of milli-heat exchanger reactorsMoreau, Maxime 14 November 2014 (has links)
L'intérêt croissant pour l'intensification des procédés a conduit à l'avènement d'un nombre conséquent de nouvelles technologies. Le projet ANR PROCIP qui a financé cette thèse a pour but de développer un logiciel d’aide à la décision pour aider l’utilisateur industriel dans son choix de technologie optimale pour une application donnée. La méthodologie globale de discrimination des technologies vis-à-vis d’un système réactif est basée sur l’utilisation d’une base de données technologique et sur le calcul de critères de choix. Elle nécessite une bonne connaissance du comportement hydrodynamique des appareils et de leurs performances en termes de transfert de chaleur et de matière. Dans cet objectif, les travaux présentés ici portent notamment sur l’étude du comportement hydrodynamique de milli-réacteurs échangeurs industriels. Des méthodologies expérimentales et numériques de caractérisation ont été mises au point. Elles ont permis d’obtenir des corrélations pour l’estimation des pertes de charge, des coefficients de dispersion axiale et des temps de mélange pour plusieurs milli-réacteurs en fonction des conditions opératoires et de la géométrie des appareils. En outre, une nouvelle méthode numérique est proposée pour la détermination des coefficients de dispersion axiale et des temps de mélange. Elle est appliquée pour prédire l’effet de l’extrapolation des caractéristiques géométriques des appareils sur ces propriétés. Dans une dernière partie, l’impact de la dispersion axiale sur le taux de conversion et la sélectivité de différents schémas de synthèses chimiques est discuté. / The interest for process intensification has leaded to the emergence of a wide panel of new technologies. The aim of the ANR PROCIP collaborative project which has funded this work is to develop a new software program including a methodology for process choice focused on intensified technologies. The global methodology of discrimination between the different technologies with respect to a given reactive system is based on the use of an equipment database and on the evaluation of criterion of choice. This methodology implies a good knowledge of the hydrodynamics of the different reactors and their mass and thermal transfer performances. The purpose of the present work is to develop experimental and numerical methodologies for the hydrodynamic characterization of different industrial milli-heat-exchangers reactors. Pressure drop, mixing time and axial dispersion coefficient correlations are given as function of the operating conditions and the geometrical parameters of the reactors. In particular, a new numerical method using CFD computation for the determination of axial dispersion coefficients and mixing times is presented. This method is used to predict the effect of the scale-up of the geometrical characteristics of an intensified reactor on its hydrodynamic performances. Finally, the impact of axial dispersion on the conversion rate and the selectivity for different chemical synthesis schemes is discussed
|
3 |
Étude expérimentale et numérique du mélange et de la dispersion axiale dans une colonne à effet Taylor-Couette / Experimental and numerical study of mixing and axial dispersion in a Taylor-Couette deviceNemri, Marouan 26 June 2013 (has links)
Les contacteurs centrifuges, basés sur les écoulements de Taylor-Couette, sont bien adaptés pour la mise en œuvre de réactions chimiques ou biochimiques, y compris en milieu polyphasique. Ils possèdent particulièrement plusieurs propriétés favorables à la mise en œuvre des opérations d'extraction liquide-liquide. Un dispositif expérimental a été conçu avec cette idée en tête. Il est constitué de deux cylindres concentriques avec le cylindre intérieur entraîné en rotation et l'externe fixe. L’écoulement de Taylor-Couette se produit dans l’espace annulaire entre eux. Il présente la particularité d’évoluer vers la turbulence par apparition successive d’instabilités. La dispersion axiale ainsi que le mélange, sont extrêmement sensibles à ces structures d’écoulement, ce qui rend difficile la modélisation du couplage entre l’hydrodynamique et le transfert de matière. Ce point particulier a été étudié expérimentalement et numériquement. L’écoulement et le mélange ont été caractérisés par des mesures simultanées de PIV (Vélocimétrie par Imagerie de Particules) et PLIF (Fluorescence Induite par Laser). Les champs de concentration PLIF ont permis d’identifier les différents mécanismes de transport intra et inter-vortex. Pour les régimes ondulatoires (WVF et MWVF), le mélange intra-vortex est contrôlé par l’advection chaotique, directement lié aux caractéristiques du champ de vitesse, qui confère aux vortex une capacité plus importante à convecter et à étirer les filets de fluide. En revanche, l’apparition des vagues brisent les frontières qui séparent les vortex ce qui favorise le transport inter-vortex. La combinaison de ces deux mécanismes contrôle principalement la dispersion axiale. Nous avons également mis en évidence le comportement non monotone des propriétés de mélange en fonction de l’histoire de l’écoulement. Notamment l’état d’onde (la longueur d’onde axiale et l’amplitude de la vague). Nous avons calculé le coefficient de dispersion axiale Dx à l’aide des mesures de distribution de temps de séjour (DTS) et de suivi Lagrangien de particules (DNS). Les deux résultats numériques et expérimentaux ont confirmé l’effet significatif des structures de l’écoulement et de l’histoire sur la dispersion axiale. / Taylor-Couette flows between two concentric cylinders have great potential applications in chemical engineering. They are particularly convenient for two-phase small scale devices enabling solvent extraction operations. An experimental device was designed with this idea in mind. It consists of two concentric cylinders with the inner one rotating and the outer one fixed. Taylor-Couette flows take place in the annular gap between them, and are known to evolve towards turbulence through a sequence of successive instabilities. Macroscopic quantities, such as axial dispersion and mixing index, are extremely sensitive to these flow structures, which may lead to flawed modelling of the coupling between hydrodynamics and mass transfer. This particular point has been studied both experimentally and numerically. The flow and mixing have been characterized by means of flow visualization and simultaneous PIV (Particle Imaging Velocimetry) and PLIF (Planar Laser Induced Fluorescence) measurements. PLIF visualizations showed clear evidences of different transport mechanisms including « intravortex mixing » and « inter-vortex mixing ». Under WVF and MWVF regimes, intra-vortex mixing is controlled by chaotic advection, due to the 3D nature of the flow, while inter-vortex transport occurs due to the presence of waves between neighbouring vortices. The combination of these two mechanisms results in enhanced axial dispersion. We showed that hysteresis may occur between consecutive regimes depending on flow history and this may have a significant effect on mixing for a given Reynolds number. The axial dispersion coefficient Dx evolution along the successive flow states was investigated thanks to dye Residence Time Distribution measurements (RTD) and particle tracking (DNS). Both experimental and numerical results have confirmed the significant effect of the flow structure and history on axial dispersion. Our study confirmed that the commonly used 1-parameter chemical engineering models (e.g. the « well-mixed stirred tanks in serie » model) are not valid for Taylor-Couette reactors modelling : two parameters are at least required for an efficient description of mixing in Taylor-Couette flows.
|
Page generated in 0.0881 seconds