• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rheological characterisation of hydroxapatite filled polyethylene composites. Part II - Isothermal compressibility and wall slip

Martyn, Michael T., Coates, Philip D., Joseph, R., Tanner, K.E., Bonfield, W. January 2001 (has links)
No / Rheological characterisation of hydroxyapatite -high density polyethylene (HA-HDPE) composites has been performed in terms of isothermal compressibility and wall slip. Addition of HA to the polymer melt decreases the compressibility of the melt. The unfilled HDPE was found to exhibit wall slip at shear stresses as low as 0.10 MPa. The flow curves of the composites showed three distinct regions: a gradient at low shear rates; a plateau region; and a gradient at higher shear rate. An increase in rheometer pressure seems to suppress the slip in composites. The 40 vol.-% HA-HDPE composite exhibited two critical shear stresses, one corresponding to wall slip, which occurs in the lower shear rate region of the flow curve, and the other corresponding to a plateau, which is identified with the stick-slip behaviour of unfilled HDPE reported in the literature. The plateau shear stress increased with filler volume fraction and this effect is attributed to the decreased compressibility of the melt. A good correlation with a negative correlation coefficient was found to exist between compressibility and shear stress in the plateau region. The slip observed in unfilled HDPE and at low shear rates in the 40 vol.-% HA- HDPE systems has been explained in terms of a low molecular weight polymer layer formed at the melt/wall interface. The large interfacial slip observed in the plateau region is attributed to complete disentanglement of adsorbed chains from free chains at the melt/wall interface at and beyond the plateau region.
2

Effect of polymer matrix on the rheology of hydroxapatite filled polyethylene composites.

Martyn, Michael T., Joseph, R., McGregor, W.J., Tanner, K.E., Coates, Philip D. January 2002 (has links)
No / The effect of matrix polymer and filler content on the rheological behavior of hydroxyapatite-filled injection molding grade high-density polyethylene (HDPE) has been studied. Studies of the flow curves revealed that the matrix and the composite exhibit three distinct regions in the flow curve, namely, a pseudoplastic region at low to moderate shear rates, a plateau and a second pseudoplastic region at high shear rates. The shear stress corresponding to the plateau (Tc) is dependent on both the filler concentration and the melt temperature. Addition of HA in the HDPE matrix increases the value of Tc and decreases compressibility of the melt. An increase in temperature also raises the value of Tc. From the nature of flow curves it is concluded that the matrix polymer largely decides the rheology of the composite.

Page generated in 0.1358 seconds