• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrasonic measurement of residual wall thickness during gas assisted injection moulding.

Mulvaney-Johnson, Leigh, Brown, Elaine C., Coates, Philip D. January 2007 (has links)
No / Ultrasonic technology provides a powerful and noninvasive method of in-process measurement during injection molding and extrusion. Changes in the velocity, attenuation and reflection coefficients of high frequency sound waves can be related to the state and conditions of the materials through which they propagate. The velocity of an ultrasonic wave changes with density and elastic moduli; this allows information on solidification and material properties to be collected during the molding cycle. The time of flight of the wave is a function of velocity and path length. This paper shows that it can be correlated with the residual wall thickness of polymer in the mold during gas assisted injection molding.
2

Micromoulding: extreme process monitoring and in-line product assessment.

Whiteside, Benjamin R., Howell, Ken B., Martyn, Michael T., Spares, Robert 08 June 2009 (has links)
No / Advances in micromoulding technology are now allowing mass production of complex, three-dimensional functional products having sub-milligram masses and carefully tailored surface finishes. In order to create a viable manufacturing process for these components, accurate process monitoring and product evaluation are essential in order to highlight process problems and production of substandard parts. The present study describes work implementing a suite of sensors on a commercial micromoulding machine for detailed process interrogation. Evaluation of demoulded products is performed with a single camera based system combined with custom software to allow for three-dimensional characterisation of products during the process.
3

Effect of polymer matrix on the rheology of hydroxapatite filled polyethylene composites.

Martyn, Michael T., Joseph, R., McGregor, W.J., Tanner, K.E., Coates, Philip D. January 2002 (has links)
No / The effect of matrix polymer and filler content on the rheological behavior of hydroxyapatite-filled injection molding grade high-density polyethylene (HDPE) has been studied. Studies of the flow curves revealed that the matrix and the composite exhibit three distinct regions in the flow curve, namely, a pseudoplastic region at low to moderate shear rates, a plateau and a second pseudoplastic region at high shear rates. The shear stress corresponding to the plateau (Tc) is dependent on both the filler concentration and the melt temperature. Addition of HA in the HDPE matrix increases the value of Tc and decreases compressibility of the melt. An increase in temperature also raises the value of Tc. From the nature of flow curves it is concluded that the matrix polymer largely decides the rheology of the composite.

Page generated in 0.0756 seconds