Spelling suggestions: "subject:"dispositifs à couche minces"" "subject:"dispositifsde à couche minces""
1 |
Fabrication de filtres interférentiels par dépôt PECVD pour l'éclairage LEDBelin, Joffrey January 2017 (has links)
Grâce à leur haute efficacité et leur durée de vie plus longue, les LED sont de plus en plus utilisées pour l’éclairage, et particulièrement depuis ces dernières années, pour l’éclairage public. Toutefois, le spectre d’émission d’une LED diffère de celui d’une ampoule à incandescence ou à décharge, avec notamment des longueurs d’onde dont l’amplitude est plus élevée dans le domaine du bleu. Il a été démontré que ces longueurs d’onde bleues réduisent la sécrétion de mélatonine, une hormone qui, en plus de ses propriétés anti-oxydantes et anti- cancérigènes, permet de réguler l’horloge biologique du corps humain. La carence de mélatonine peut provoquer des états de fatigue et de stress, pouvant conduire dans certains cas à la dépression. Les longueurs d’onde rouges et proche-IR issues d’éclairages LED ou incandescent ont également des effets négatifs sur l’environnement, puisqu’elles perturbent les cycles de la végétation, comme la photosynthèse. Ces problèmes de santé publique sont connus des autorités, si bien qu’elles imposent des normes pour réduire l’émission de longueurs d’onde bleue, rouge et proche-IR issues de l’éclairage public (ex. norme BNQ 4930-100 au Québec). Dans ce projet, nous proposons des filtres interférentiels permettant d’éliminer les longueurs d’onde nuisibles issues d’un éclairage LED, sans impacter la qualité et l’efficacité de cet éclairage. En utilisant la technique de dépôt PECVD (Plasma Enhanced Chemical Vapor Deposition), nous avons développé des matériaux optiques innovants qui permettent de réaliser des filtres efficaces, simples et à faible coût.
|
2 |
Implémentation d'une couche physique temps réel MIMO-OFDM sur FPGALarouche, Jean-Benoit 20 April 2018 (has links)
Ce mémoire est consacré à la description détaillée d’une couche physique implémentée sur une plateforme FPGA. La couche physique intègre plusieurs des technologies présentes dans les standards de télécommunication de dernière génération. Tout d’abord, un survol des technologies OFDM et MIMO est effectué puisque que ces deux technologies sont d’une grande importance dans les télécommunications d’aujourd’hui. Par la suite, une description du matériel utilisé pour tester le bon fonctionnement de la couche physique est effectuée. Une bonne partie du mémoire sera consacrée à la description de la couche physique déployée. Un schéma-bloc détaillé de cette dernière est présenté. La couche physique est divisée principalement en deux parties : le transmetteur et le récepteur. Au niveau du transmetteur, la structure du paquet généré sera présentée ainsi que les différents symboles d’acquisition et d’estimation de canal. Du côté du récepteur, nous nous attarderons aux algorithmes mis en œuvres afin d’effectuer le décodage d’un paquet. L’algorithme de contrôle de gain automatique, l’estimateur de déviation fréquentiel de la porteuse, le détecteur de début de paquet et l’estimateur de canal seront présentés. Enfin, des courbes démontrant le taux d’erreurs de bit dans du bruit blanc gaussien additif seront présentées et comparées avec les courbes théoriques. Une discussion sur les résultats suivra ainsi qu’une liste de suggestions afin de porter plus loin la couche physique. / This report is focused on a detailed description of a physical layer implemented on an FPGA platform. The physical layer integrates many of the up to date technologies used in the latest generation telecommunication standards. First of all, an overview of the OFDM and MIMO technologies is presented since both technologies are very important in today’s telecommunications. Thereafter, there is a description of the hardware used to test the proper functioning of the physical layer. The major part of this report is aimed toward the description of the physical layer itself. A detailed block diagram of the latter is presented. The physical layer is divided in two main sections: the transmitter and the receiver. Regarding the transmitter, the structure of the generated packet is presented together with the acquisition and channel estimation symbols. On the receiver side, we will focus on the implemented algorithms to decode a packet. The automatic gain control algorithm, the carrier frequency offset estimator, the block boundary detector and the channel estimator are detailed. Finally, binary error rate curves in an additive white Gaussian noise channel will be presented and compared to theoretical curves. A discussion about the obtained results will follow as well as a list of the future improvements which could be made to take the physical layer further.
|
Page generated in 0.0956 seconds