• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo do algoritmo AdaBoost de aprendizagem de máquina aplicado a sensores e sistemas embarcados. / Study of AdaBoost algorithm applied to sensors and embedded systems.

Chaves, Bruno Butilhão 05 December 2011 (has links)
O estudo da Inteligência Artificial e de suas técnicas tem trazido grandes resultados para a evolução da tecnologia em diversas áreas. Técnicas já conhecidas como as Redes Neurais e Árvores de Decisão vêm sendo aprimoradas por técnicas de Boosting como o Adaptive Boosting. Esta técnica é uma das que apresenta maior perspectiva de crescimento devido a seu potencial, flexibilidade e simplicidade para ser implementada em diferentes cenários, como por exemplo, no tratamento de imagens para reconhecimento de padrões. Um mercado com grande potencial para se beneficiar da técnica de Boosting, e em especial do AdaBoost, é o mercado de sensores. É cada vez mais comum a utilização de sensores isolados ou sistemas de múltiplos sensores trabalhando concomitantemente para se atingir um objetivo comum. Na utilização de sistemas embarcados compostos por sensores para realização de análises e tomadas de decisão são cada vez mais requisitados, principalmente onde se requer algum tipo de reconhecimento de padrão. O objetivo desta dissertação é estudar e desenvolver o conhecimento do algoritmo AdaBoost para aplicação em sensores, de forma a aprimorar a sensibilidade e precisão das medições, tanto de sensores isolados como de sistemas complexos com vários sensores, sem que seja necessário realizar modificações no próprio sensor. O estudo estende-se também em como implementar o algoritmo inteligente a um dispositivo autônomo composto por sensores e um microprocessador que contenha um classificador embarcado de reconhecimento de padrões. Para demonstrar a utilidade da técnica, foi realizado um estudo de caso utilizando um sistema composto de sensores capacitivos interdigitalizados e microfabricados, sensores de temperatura e sensor a fibra óptica, para verificar adulterações em combustíveis automotivos, em especial, do etanol combustível. Sete experimentos são apresentados no trabalho. Índices acima de 90% de classificações corretas foram obtidos, indicando a viabilidade da utilização do algoritmo para calibração de sensores ou rede de sensores. Por fim, foi desenvolvida com sucesso uma forma de embarcar o classificador treinado em um microprocessador, confirmando assim ser possível desenvolver dispositivos embarcados contendo essa tecnologia. / Studies on Artificial Intelligence and its techniques have provided great results for the whole technology evolution in several areas. Techniques known as Neural Networks and Decision Trees have been improved by Boosting techniques such as Adaptive Boosting. This particular technique presents great growth prospects due to its potential, flexibility and simplicity to be implemented in different scenarios, such as image analysis for pattern recognition. A specific market that can greatly benefit from the technique of Boosting and particularly AdaBoost is the sensor market. The use of isolated sensors or multiple sensor systems working together in order to reach a common goal is increasingly common. Embedded systems consisting of sensors for analysis and decision-making are also increasingly common especially in cases in which some sort of pattern recognition is necessary. Therefore, the purpose of this thesis is to study and to develop some knowledge about the AdaBoost algorithm applied to sensors in order to improve the sensitivity and accuracy of its measurements, both in isolated sensors and in complex systems with multiple sensors, without requiring any change in the sensor itself. The study also approaches how to implement the intelligent algorithm in an autonomous device composed by sensors and a microprocessor that contains an embedded classifier for pattern recognition. Accordingly, a case study was conducted using a system composed of microfabricated capacitive sensors, temperature sensors and fiber optical sensor with the purpose of analyzing the amount of automobile fuels, especially ethanol fuel. Seven experiments were performed in order to demonstrate the usefulness of this technique and they are presented in the study. Rates above 90% of correct classifications were obtained, which indicates the feasibility of using the algorithm for sensor calibration or sensor network calibration. Finally, a way to embed a trained classifier into a microprocessor was successfully developed, confirming that it is possible to develop embedded devices containing this technology.
2

Estudo do algoritmo AdaBoost de aprendizagem de máquina aplicado a sensores e sistemas embarcados. / Study of AdaBoost algorithm applied to sensors and embedded systems.

Bruno Butilhão Chaves 05 December 2011 (has links)
O estudo da Inteligência Artificial e de suas técnicas tem trazido grandes resultados para a evolução da tecnologia em diversas áreas. Técnicas já conhecidas como as Redes Neurais e Árvores de Decisão vêm sendo aprimoradas por técnicas de Boosting como o Adaptive Boosting. Esta técnica é uma das que apresenta maior perspectiva de crescimento devido a seu potencial, flexibilidade e simplicidade para ser implementada em diferentes cenários, como por exemplo, no tratamento de imagens para reconhecimento de padrões. Um mercado com grande potencial para se beneficiar da técnica de Boosting, e em especial do AdaBoost, é o mercado de sensores. É cada vez mais comum a utilização de sensores isolados ou sistemas de múltiplos sensores trabalhando concomitantemente para se atingir um objetivo comum. Na utilização de sistemas embarcados compostos por sensores para realização de análises e tomadas de decisão são cada vez mais requisitados, principalmente onde se requer algum tipo de reconhecimento de padrão. O objetivo desta dissertação é estudar e desenvolver o conhecimento do algoritmo AdaBoost para aplicação em sensores, de forma a aprimorar a sensibilidade e precisão das medições, tanto de sensores isolados como de sistemas complexos com vários sensores, sem que seja necessário realizar modificações no próprio sensor. O estudo estende-se também em como implementar o algoritmo inteligente a um dispositivo autônomo composto por sensores e um microprocessador que contenha um classificador embarcado de reconhecimento de padrões. Para demonstrar a utilidade da técnica, foi realizado um estudo de caso utilizando um sistema composto de sensores capacitivos interdigitalizados e microfabricados, sensores de temperatura e sensor a fibra óptica, para verificar adulterações em combustíveis automotivos, em especial, do etanol combustível. Sete experimentos são apresentados no trabalho. Índices acima de 90% de classificações corretas foram obtidos, indicando a viabilidade da utilização do algoritmo para calibração de sensores ou rede de sensores. Por fim, foi desenvolvida com sucesso uma forma de embarcar o classificador treinado em um microprocessador, confirmando assim ser possível desenvolver dispositivos embarcados contendo essa tecnologia. / Studies on Artificial Intelligence and its techniques have provided great results for the whole technology evolution in several areas. Techniques known as Neural Networks and Decision Trees have been improved by Boosting techniques such as Adaptive Boosting. This particular technique presents great growth prospects due to its potential, flexibility and simplicity to be implemented in different scenarios, such as image analysis for pattern recognition. A specific market that can greatly benefit from the technique of Boosting and particularly AdaBoost is the sensor market. The use of isolated sensors or multiple sensor systems working together in order to reach a common goal is increasingly common. Embedded systems consisting of sensors for analysis and decision-making are also increasingly common especially in cases in which some sort of pattern recognition is necessary. Therefore, the purpose of this thesis is to study and to develop some knowledge about the AdaBoost algorithm applied to sensors in order to improve the sensitivity and accuracy of its measurements, both in isolated sensors and in complex systems with multiple sensors, without requiring any change in the sensor itself. The study also approaches how to implement the intelligent algorithm in an autonomous device composed by sensors and a microprocessor that contains an embedded classifier for pattern recognition. Accordingly, a case study was conducted using a system composed of microfabricated capacitive sensors, temperature sensors and fiber optical sensor with the purpose of analyzing the amount of automobile fuels, especially ethanol fuel. Seven experiments were performed in order to demonstrate the usefulness of this technique and they are presented in the study. Rates above 90% of correct classifications were obtained, which indicates the feasibility of using the algorithm for sensor calibration or sensor network calibration. Finally, a way to embed a trained classifier into a microprocessor was successfully developed, confirming that it is possible to develop embedded devices containing this technology.
3

Implementa??o de sistemas baseados em regras nebulosas por m?todo matricial em dispositivos embarcados

Ganselli, Tiago Trevisani 11 December 2014 (has links)
Made available in DSpace on 2016-04-04T18:31:41Z (GMT). No. of bitstreams: 1 Tiago Trevisani Ganselli.pdf: 2054440 bytes, checksum: 19be2b4fac5342b6227e8ce56bfbc1f2 (MD5) Previous issue date: 2014-12-11 / It is known that the need for devices with higher processing capacities and low power consumption is increasing, making algorithm optimization necessary to allow the maximum utilization of the application s resources. In this work, the Matrix Method was implemented in embedded systems to solve Fuzzy calculations, allowing the decision-making process to be included in several applications. Code was developed for Scilab, Arduino, and the embedded Linux distribution OpenWRT, being tested in real devices through the comparison with the original Matrix Method algorithm implementation and the case study of the MAC anomaly in IEEE 802.11 networks. Results show that the Matrix Method is compatible for use in embedded systems, and the analysis and specific configuration of each application are necessary for the best performance to be achieved. Conclusion shows that the balance between the decision-making and the result precision is essential to lower resource consumption to the maximum. It is expected that other studies make use of the created algorithms, assisting the decision-making process in embedded systems for the countless emerging applications. / Com a crescente necessidade de dispositivos com maior capacidade de processamento e menor consumo energ?tico faz-se necess?rio o uso de algoritmos otimizados, permitindo o m?ximo aproveitamento dos recursos dispon?veis na aplica??o. Neste trabalho foi realizada a implementa??o do M?todo Matricial para execu??o de c?lculos usando L?gica Nebulosa em dispositivos embarcados, tornando poss?vel a tomada de decis?o local nas mais diversas aplica??es. Foram desenvolvidos c?digos para o Scilab, Arduino e para a distribui??o de Linux embarcado OpenWRT, que foram testados em dispositivos reais atrav?s da compara??o com o c?digo original do M?todo Matricial e com o estudo de caso da Anomalia da MAC em redes IEEE 802.11. Os resultados obtidos indicam que o M?todo Matricial ? compat?vel com o uso em sistemas embarcados, sendo necess?ria a an?lise e configura??o espec?fica de cada aplica??o para que o melhor desempenho seja alcan?ado. Concluiu-se que o balanceamento entre a tomada de decis?o e a precis?o do resultado ? essencial para realizar o c?lculo com o menor consumo de recursos poss?vel. Espera-se que outros trabalhos fa?am uso dos algoritmos criados, a fim de auxiliar na tomada de decis?o em dispositivos embarcados nas in?meras aplica??es emergentes.

Page generated in 0.0493 seconds