Spelling suggestions: "subject:"dissociative recombination"" "subject:"bissociative recombination""
1 |
Dynamics in the Dissociative Recombination of Small Polyatomic Molecular IonsZhaunerchyk, Vitali January 2008 (has links)
<p>Dissociative recombination (DR) is a process in which a positive molecular ion recombines with an electron and subsequently dissociates into neutral fragments. Among the different types of molecular ion-electron reactions DR deserves particular attention due to the important role it plays in low-temperature and low-density plasmas. Despite the apparent simplicity of the DR reaction, its investigation has proven to be a difficult task from both experimental and theoretical perspectives. In order to shed more light upon this process the storage ring technique has been introduced and utilised extensively for the last few decades. This thesis is devoted to experimental studies into the DR reaction at the storage ring CRYRING. The DR reaction has been investigated for the following molecular ions; Na<sup>+</sup>(D<sub>2</sub>O), PD<sub>2</sub><sup>+</sup>, O<sub>3</sub><sup>+</sup>, N<sub>3</sub><sup>+</sup>, H<sub>2</sub><sup>+</sup>, D<sub>2</sub>H<sup>+</sup>, OPCl<sup>+</sup>, OPCl<sub>2</sub><sup>+</sup> and H<sub>3</sub>O<sup>+</sup>, with the aim to ascertain rotational state effects, to find patterns in the branching products of similar molecular ions, to investigate isotope effects and to study in detail the dynamics involved in the three-body break-up channel.</p>
|
2 |
Dynamics in the Dissociative Recombination of Small Polyatomic Molecular IonsZhaunerchyk, Vitali January 2008 (has links)
Dissociative recombination (DR) is a process in which a positive molecular ion recombines with an electron and subsequently dissociates into neutral fragments. Among the different types of molecular ion-electron reactions DR deserves particular attention due to the important role it plays in low-temperature and low-density plasmas. Despite the apparent simplicity of the DR reaction, its investigation has proven to be a difficult task from both experimental and theoretical perspectives. In order to shed more light upon this process the storage ring technique has been introduced and utilised extensively for the last few decades. This thesis is devoted to experimental studies into the DR reaction at the storage ring CRYRING. The DR reaction has been investigated for the following molecular ions; Na+(D2O), PD2+, O3+, N3+, H2+, D2H+, OPCl+, OPCl2+ and H3O+, with the aim to ascertain rotational state effects, to find patterns in the branching products of similar molecular ions, to investigate isotope effects and to study in detail the dynamics involved in the three-body break-up channel.
|
3 |
Dissociative recombination of organic molecular ions of relevance for interstellar clouds and Titan's upper atmosphereVigren, Erik January 2010 (has links)
This thesis presents experimental studies on the dissociative recombination (DR) of the organic molecular ions CD3CND+, CH2CHCNH+, CH3CH2CNH+, CD3CDO+, CH3CHO+ and DCOOD2+. The experiments were all performed at the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory in Stockholm, Sweden. DR is the process in which a singly charged molecular cation captures a free electron, forming a highly excited intermediate molecule which then dissociates into exclusively neutral fragments. The process plays an important role as a plasma neutralizing mechanism in many cold, low density plasmas such as those encountered in planetary ionospheres and interstellar clouds. DR can also act as the final step in the gas-phase synthesis of different neutral molecules in such environments. Our experimental findings indicate that nitriles that are lost by protonation in Titan’s upper atmosphere or in interstellar clouds to a large extent may be recycled by DR. Also, it appears that the DR of nitrile ions does not break the C-N bond, which supports the hypothesis that nitriles which are formed in Titan’s upper atmosphere do not degrade to recover N2. For the studied acetaldehyde cations, CD3CDO+ and CH3CHO+, we observed a considerable isotopic effect in the cross section, with the lighter isotopologue being more reactive. In the DR of DCOOD2+ an upper limit of only 13% for the branching fraction of the DCOOD + D channel was found. This finding has pronounced effects on the predicted abundance of formic acid in dark clouds.
|
4 |
Theoretical And Computational Studies Of Dissociative Recombination Of H3+ With Low Kinetic Energy Electrons: Time-independent ASantos, Samantha 01 January 2009 (has links)
Dissociative recombination of molecular ions by collisions with electrons is a reactive collision, in which the electronic kinetic energy is transferred to the excitation of the molecule that, then, dissociates. The goals of this dissertation was (1) to improve existing approaches in theory of DR of triatomic ions in the time-independent framework developed in recent years by Kokoouline and Greene, and (2) to develop a time-dependent theoretical framework for DR treatment based on quantum defect theory. The theoretical method developed by Kokoouline and Greene is based on multichannel quantum defect theory and accounts for the major non-Born-Oppenheimer Jahn-Teller interaction between electronic and vibrational motions of the molecule. The study of this dissertation is partially based on this method but improved, extended, and systematically applied in the framework of my thesis. This dissertation presents the calculated DR rate coefficient for H3+ within the time-independent framework and the description of the method used to obtain the (qualitative) flux with time-dependent method. The time-independent results show good agreement with experimental data from storage ring experiments. The DR rate coefficients for ortho- and para-H3+ were calculated separately and show a significant difference at very low electronic energies; a result that agrees with recent storage ring experiments. Also, it is discussed results for other isotopologues of H3+ (H2D+, D2H+, and D3+) and the results for vibrationally-excited initial states of H3+. It was found that the DR rate coefficients for vibrationally-excited initial states are larger than the rates for the ion initially in the ground vibrational state. At the end, this dissertation discuss the time-dependent calculations done with a diatomic model system.
|
5 |
Theoretical studies of chemical dynamics on excited states, driven by non-adiabatic effects : Charge recombination reactionsNkambule, Sifiso Musa January 2016 (has links)
This thesis is based on theoretical studies of molecular collisions occurring at relatively low to intermediate collision energies. The collisions are called dissociative recombination (DR) and mutual neutralization (MN). In a molecular quantum mechanical picture, both reactions involve many highly excited molecular electronic states that are interacting by non-adiabatic couplings with each other. The molecular complexes involved in the collisions are relatively (diatomic or triatomic systems) composed of relative light atoms. This allows for accurate quantum chemistry calculations and a quantum mechanical description of the nuclear motions. The reactions studied here are the MN reaction in collisions of H++ H-, Li++ F-, and He++ H- and the DR reaction of H2O+. Rotational couplings are investigated in the study of MN reaction for He++ H . For some reactions, the electronic resonant states have to be considered. These are not bound states, but are states interacting with the ionization continuum. Electronic structure calculations are combined with electron scattering calculations to accurately compute potential energy curves for the resonant states involved in the DR of H2O+ and the MN of He++ H. From these calculations, the autoionization widths of the resonant states are also obtained. Once the potential energy curves are computed for the systems, the nuclear dynamics are studied either semi-classically, using the Landau-Zener method or quantum mechanically, employing the time-independent and time-dependant Schrödinger equations. Reaction cross section and final states distribution are computed for all the reactions, showing significantly large cross section at low to intermediate collision energies. For the MN processes, studied here, not only total cross sections are calculated but differential cross sections as well. Where possible, comparisons with previous experimental and theoretical results are performed / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
|
6 |
Dissociative Recombination of Astrochemically Interesting IonsHamberg, Mathias January 2010 (has links)
In this thesis the major work described concerns experimental determination of the dissociative recombination (DR) reaction for several molecular ions of astrochemical interest. DR is the process where an electron recombines with a molecular ion to form an excited neutral that disintegrates into two or more neutral fragments to release the gained excess energy. It is very efficient under cold conditions and therefore ubiquitously occurring in interstellar environments such as dark clouds and plays an important role in aeronomical plasmae, lightnings and in man-made plasmas such as in combustion engines and fusion reactors. Although DR reactions are crucial processes in all these environments, product branching fractions of DR reactions have proven to be very unpredictable and present one of the great remaining challenges for theoreticians. The experimental work includes determination of reaction rates and product distribution of DR of complex ions such as protonated alcohols and ethers. The following species have been investigated and are discussed in this thesis: CH3OH2+ (protonated methanol), CD3OD2+ (deuteronated methanol), CD3OCD2+ (methoxymethyl cation), CD3CDOD+ (deuteronated acetaldehyde), CH3CH2OH2+ (protonated ethanol) and (CD3)2OD+ (deuteronated dimethyl ether). The results of these measurements are used in astrochemical model calculations in which the rates used hitherto greatly have been based on educated guesses. Employing the outcome of the DR investigations of the CH3OH2+ and CD3OD2+ ions have shown a great impact on such models. The DR investigations have been followed up by astronomical observations. Theoretical models and laboratory experiments show that methanol should be formed from CO on cold grains. This scenario was tested by astronomical observations of gas associated with young stellar objects (YSOs). Two independent tests were showing consistency with methanol formation on grain surfaces. / I den här avhandlingen redovisas mitt arbete som till stor del baseras på experimentell bestämning av dissociativa rekombinations (DR) processer för molekylära joner av astrokemiskt intresse. DR är en process där en elektron rekombinerar med en molekylär jon som splittras up i två eller fler neutrala fragment för att göra sig av med den extra energi som erhållits. Processen är väldigt effektiv i kalla miljöer varför den är allestädes återkommande i omgivningar som interstellära moln och kometkoman och spelar en betydande roll i aeronomiska plasman, blixturladdningar men även i mänskligt skapade plasman såsom de i förbränningsmotorer och fusionsreaktorer. Det har dock visat sig att produkt distributionsförhållandena från DR reaktioner är mycket oförutsägbara och kvarstår som en av de stora återstående utmaningarna för teoretiker. Det experimentella arbetet består av bestämning av reaktionshastigheter samt produktdistribution för DR av komplexa joner som protonerade alkoholer och etrar. De följande jonerna har blivit undersökta och diskuteras i denna avhandling: CH3OH2+ (protonerad metanol), CD3OD2+ (deuteronerad metanol), CD3OCD2+ (metoxymetyl katjon), CD3CDOD+ (deuteronerad acetaldehyd), CH3CH2OH2+ (protonerad etanol) och (CD3)2OD+ (deuteronerad dimetyleter). Resultaten av mätningarna används i astrokemiska modelberäkningar i vilka reaktionshastigheterna som hittills använts till stor del baserats på kvalificerade gissningar. Insättning av resultaten av CH3OH2+ och CD3OD2+ jonerna har visat sig ha en stor effekt på sådana modeller. DR undersökningarna har följts upp av astronomiska observationer. Teoretiska modeller och laboratorieundersökningar visar att metanol borde kunna formas från CO på kalla iskornsytor, detta scenario har testats med astronomiska observationer av gas som associeras med unga stjärnor. Två oberoende undersökningar visade på förenlighet med metanolformation på kornytor. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 2: In press. Paper 3: Manuscript. Paper 5: Manuscript.
|
7 |
Studium rekombinace molekulárních iontů s elektrony za nízkých teplot / Recombination of molecular ions with electrons at low temperaturesKálosi, Ábel January 2015 (has links)
The aim of this work is the experimental study of recombination of molecular ions with electrons at low temperatures (< 300 K). The work gives an overview of the diagnostic methods, modelling of chemical kinetics, and experimental ap- paratuses Cryo-FALP II and SA-CRDS used in the undertaken measurements. Two processes were studied in the course of this work: state-selective binary disso- ciative recombination of H+ 3 ions in para-H+ 3 and ortho-H+ 3 states, and H2-assisted ternary recombination of H+ 3 . The main result of the state-selective dissociative recombination study is that the rate of recombination in the para-H+ 3 state is at least three times higher than in the ortho-H+ 3 state at 60 K. The study of H2- assisted recombination gave a better understanding of ternary processes of H+ 3 ions and removed further discrepancies between results of afterglow experiments.
|
8 |
Spectroscopic study of titanium monohydride and storage ring experimentsDanielsson, Mathias January 2008 (has links)
<p>This thesis describes two projects, spectroscopy of the astrophysically relevant molecule TiH and its isotopologue TiD, and the dissociative recombination (DR) reaction of astrophysically and atmospherically relevant molecules. Emphasis in the thesis is on the first project.</p><p>A series of laser aided spectroscopic studies of TiH/TiD has been carried out. A search for forbidden transitions in the (green) B-X band of TiH was performed. This was followed by a rather bitter fight for the analysis of the perturbed and congested B-X band of TiD, and this was finally rewarding. A substantial extension of a previously reported analysis of this band was performed. The new analysis includes transitions between higher vibrational levels never previously identified. This made it possible to report the first experimentally derived equilibrium constants for the TiH/TiD molecules. There is a need for such results for metal hydrides in the work of calculating the opacity of the atmospheres of cool M and L type stars.</p><p>The DR storage ring experiments have been carried out at the ion storage ring CRYRING in Stockholm. Measurements of the branching fractions and DR rate constants of molecular ions have been done. These results find use in the modeling of the chemistry in interstellar clouds as well as of atmospheres, like the one of Titan, one of the moons of Saturn, which was recently visited by the spacecraft Cassini.</p>
|
9 |
Spectroscopic study of titanium monohydride and storage ring experimentsDanielsson, Mathias January 2008 (has links)
This thesis describes two projects, spectroscopy of the astrophysically relevant molecule TiH and its isotopologue TiD, and the dissociative recombination (DR) reaction of astrophysically and atmospherically relevant molecules. Emphasis in the thesis is on the first project. A series of laser aided spectroscopic studies of TiH/TiD has been carried out. A search for forbidden transitions in the (green) B-X band of TiH was performed. This was followed by a rather bitter fight for the analysis of the perturbed and congested B-X band of TiD, and this was finally rewarding. A substantial extension of a previously reported analysis of this band was performed. The new analysis includes transitions between higher vibrational levels never previously identified. This made it possible to report the first experimentally derived equilibrium constants for the TiH/TiD molecules. There is a need for such results for metal hydrides in the work of calculating the opacity of the atmospheres of cool M and L type stars. The DR storage ring experiments have been carried out at the ion storage ring CRYRING in Stockholm. Measurements of the branching fractions and DR rate constants of molecular ions have been done. These results find use in the modeling of the chemistry in interstellar clouds as well as of atmospheres, like the one of Titan, one of the moons of Saturn, which was recently visited by the spacecraft Cassini.
|
10 |
Studium rekombinace iontů s elektrony při teplotách nižších než 300 K / Electron-Ion Recombination at Temperatures below 300KKotrík, Tomáš January 2013 (has links)
Title: Recombination study of ions with electrons at temperatures below 300 K Author: Tomáš Kotrík Department: Department of Surface and Plasma Science Supervisor of the doctoral thesis: Prof. RNDr. Juraj Glosík, DrSc. Department of Surface and Plasma Science Abstract: Presented is the study of recombination of ions with electrons performed at low temperatures using the Flowing afterglow with Langmuir probe experimental technique. Studied was the dissociative recombination of H and D ions at temperatures 77 - 300 K. Apart from a two-body also a three-body recombination channel assisted by neutral He atoms was identified and studied. The obtained temperature dependence of the two-body recombination rate coefficient is in a good agreement with findings of other experimental and theoretical works. The dissociative recombination of HCO and DCO ions with electrons was studied in the temperature range 150 - 300 K. The observed temperature dependence of measured recombination rate coefficient for HCO and DCO ions (~T -1.3 and ~T -1.1 , respectively) is in agreement with the majority of previous experimental works and evokes that indirect mechanism governs the recombination process. The electron- assisted collisional-radiative recombination of Ar ions was for the first time studied at temperatures 50 - 300 K. The...
|
Page generated in 0.1317 seconds