• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 18
  • 12
  • 10
  • 8
  • 4
  • 3
  • 1
  • Tagged with
  • 157
  • 157
  • 157
  • 33
  • 26
  • 26
  • 25
  • 24
  • 22
  • 17
  • 17
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Source Tracing of Dissolved Organic Matter (DOM) in Watersheds Using UV and Fluorescence Spectroscopy

Wong, Jessica 17 February 2010 (has links)
In aquatic ecosystems, dissolved organic matter (DOM) is an important source of detrital energy on which microorganisms rely. However, its dynamics are not well understood in an ecological context. By isolating watershed sources, the work reported in this thesis has attempted to characterize the seasonal patterns of DOM in the hyporheic zone of a temperate stream and to find the likely sources that contribute to this pool of organic carbon. Hyporheic DOM characteristics described by UV spectroscopy indicated temporal rather than spatial dependence. Excitation-emission matrices (EEMs) showed that hyporheic DOM was mainly comprised of fulvic- and humic-like fluorescence with small amounts of protein-like fluorescence. Increases in dissolved organic carbon (DOC) concentrations from birch litter isolates were greater than those from cedar litter in early autumn, but less in late autumn. Although streambed biofilm was not significant in increasing DOC concentrations, it was also a source of protein-like fluorescence.
32

The use of stable carbon and oxygen isotopes to examine the fate of dissolved organic matter in two small, oligotrophic Canadian Shield lakes.

Chomicki, Krista January 2009 (has links)
Allochthonous carbon can be a large proportion of the carbon budget in northern temperate and boreal lakes. This thesis uses stable carbon and oxygen isotopes to examine the fate of allochthonous dissolved organic matter (DOM) in northern temperate lakes, and to determine the importance of dissolved organic carbon (DOC) in lake carbon mass balances and in the δ¹³C of lake sediments. To use stable isotopes as a tool for studying DOC loss and sedimentation within lakes requires an understanding of processes that affect the δ¹³C and δ¹⁸O in aquatic systems. Photolysis is one mechanism that can account for the large allochthonous DOC loss within northern temperate lakes. There is, however, little research examining the effects of photolysis on stable isotopes (e.g. δ¹³C and δ¹⁸O) in aquatic systems, or how photodegradation of DOM affects the δ¹³C of lake sediments. To study the effects of DOM photodegradation on carbon and oxygen isotopes, stream waters from catchments with varying peatland coverage were incubated in Tedlar bags placed in water baths under natural sunlight. Results from three streams flowing into two oligotrophic headwater lakes (Harp and Dickie Lakes) indicate that O₂ consumption rates and dissolved inorganic carbon (DIC) production rates were an order of magnitude greater in light exposed treatments than in dark treatments, suggesting that light mediated processes control O₂ consumption and DIC production in incubations. The similarity between filtered, inoculated, and sterile treatments, indicate that photolysis was the dominant O₂ consuming and DIC producing process in the incubations, while the contribution of respiration to these processes was not detectable. Differences in both O₂ consumption rates and DIC production rates (normalized to DOC loss) among streams suggest that DOM photolability was an important factor in both O₂ loss and DIC production on a volumetric basis. A concomitant increase in δ¹⁸O-O₂ was observed with O₂ loss indicating that during the photo-oxidation of DOM, the lighter ¹⁶O isotopomer was preferentially consumed in the oxidation of DOC to CO₂. Fractionation factors for respiration, photolysis and other abiotic reactions were not a function of O₂ consumption rates and ranged between 0.988 and 0.995, which lies outside the range published for respiration (0.975-0.982). These are the first published photolytic fractionation factors. The δ¹³C-DIC produced collectively by photolysis, respiration, and other abiotic reactions in incubations exposed to natural sunlight ranged between –23‰ and –31‰, and were similar in the light incubations for each treatment, but different among streams. Together, the light and dark incubation data suggest that photolysis and other abiotic reactions were largely responsible for the DIC concentration and δ¹³C-DIC changes observed, while respiration is a relatively minor contributor. During the incubations, as DOC photodegraded to CO₂, the lighter ¹²C isotope was preferentially mineralized (or the moieties cleaved were depleted in ¹³C) leaving the residual δ¹³C-DOC 1‰ to 4‰ enriched, creating enrichment (ε) values up to ~–3‰. The change in final δ¹³C-DOC after DOM photodegradation was different for each inflow, ranging from ~1 ‰ to 8.0 ‰, and provides an average enrichment of –2.1‰ (Harp Inflows ε: –1.2‰; Dickie Inflows ε: –3.4‰). These ε values are in agreement with the average ε from previous incubations on 3 of the inflows and 3 published studies based on UV exposed bog water (Osburn et al., 2001), riverine waters (Opsahl and Zepp, 2001), and lyophilized Juncus leachate dissolved in lake water (Vähätalo and Wetzel, 2008) (average ε = –2.9‰). The structure of DOM changed during photolysis. Absorbance data indicated that the aromaticity, colour, UV absorption and the average molecular size of the DOC decreased. Additionally, after exposure to sunlight, C/N ratios of the DOC changed from high values (24-55), indicative of terrestrial inputs, to lower values (4-13) traditionally thought to be representative of algal or microbial inputs. This contradicts the conventional view that terrestrial DOC has C/N ratios >20, and shows that abiotic processes can alter allochthonous carbon structure and the residual allochthonous carbon can have C/N values similar to, or overlapping with, C/N ratios expected from algal or microbial carbon. With the loss of 61-90% of the DOC, the particulate organic carbon (POC) created accounted for 20-90% of the DOC lost. Values of δ¹³C-POC ranged from –25.7‰ to –27.7‰, with 80% of the samples within 1‰ of the initial δ¹³C-DOC indicating that the particulate carbon created from the photodegradation of DOM that settles to the lake sediments could be isotopically similar to the source DOC. Overall, these incubations indicate that the photodegradation of DOM can affect both concentrations and isotopes of O₂, DIC, DOC, and POC of the stream waters flowing into Harp and Dickie Lakes and are important to consider in lake dynamics of high DOC retention lakes. Two independent methods were used to examine the importance of allochthonous DOC to lake sediments. The first method used a two end-member mixing model to estimate the proportion of allochthonous and autochthonous carbon within the lake sediments. Inflow δ¹³C-POC data, δ¹³C-leaf litter measurements, and DOC photodegradation experiments were used to calculate average annual δ¹³C-POC values for the allochthonous end member. The average annual δ¹³C-POC values for the autochthonous end member were calculated using estimates of productivity, surface δ¹³C-CO₂ values and estimated average annual fractionation factors. Average annual δ¹³C-POC values from allochthonous and autochthonous sources for these lakes were distinct. Using the end members to calculate the relative contributions of allochthonous and autochthonous carbon to lake sediments revealed that the δ¹³C of the lake sediment can be significantly affected by the ratio of autochthonous and allochthonous contributions. Furthermore, peaks in the allochthonous contributions of carbon accompany the δ¹³C peaks in the sediment records to the lake sediments. This suggests that climate change and/or anthropogenic changes to the landscape, and the concomitant changes in DOC inputs to lakes, can be recorded in the sediment record indicating that sediment records are not just productivity signals, but also mass balance signals in high DOC retention lakes. In the second method carbon isotope budgets were completed to accompany the carbon mass budgets for Harp and Dickie Lakes. Mass-weighted average annual δ¹³C-DOC values from the inflows and outflows and δ¹³C-DIC values from the inflows varied by 0.2‰ to 1.3‰, suggesting the values are well constrained. Conversely, the range of weighted δ¹³C-DIC values from the outflows were larger (2.2‰) than those of the inflows. Calculated δ¹³C values of the lake sediment were not equal to the measured δ13C values of the lake sediments for either Harp or Dickie Lakes suggesting a problem lies within the mass balances, or the weighted average annual δ¹³C values used in the isotope budgets. To examine the sensitivity of the average annual weighted δ¹³C values for the carbon entering and exiting the lakes, and the mass of carbon entering the lakes δ¹³C of the lake sediments, a mass and isotope budget model was created. The model indicated that the δ¹³C of the lake sediments is sensitive to a number of parameters including the amount of DOC entering the lake, the δ13C-CO2 evaded from the lake, the areal water discharge rate (qs), the gas exchange coefficient (k), and pH. Many of these parameters required adjustments for the masses of carbon to match those presented in the mass balances suggesting that the mass balances averaged over 8 years have errors associated with them. However, changing the DOC load to the lakes in the model by the variability observed over all the years of the mass balances) indicates that the isotopic signature of the lake sediment could change by up to 2.5‰. This isotope change is large enough to account for the historical δ¹³C changes observed in the δ¹³C sediment record, suggesting that allochthonous DOC can drive the sediment record.
33

The use of stable carbon and oxygen isotopes to examine the fate of dissolved organic matter in two small, oligotrophic Canadian Shield lakes.

Chomicki, Krista January 2009 (has links)
Allochthonous carbon can be a large proportion of the carbon budget in northern temperate and boreal lakes. This thesis uses stable carbon and oxygen isotopes to examine the fate of allochthonous dissolved organic matter (DOM) in northern temperate lakes, and to determine the importance of dissolved organic carbon (DOC) in lake carbon mass balances and in the δ¹³C of lake sediments. To use stable isotopes as a tool for studying DOC loss and sedimentation within lakes requires an understanding of processes that affect the δ¹³C and δ¹⁸O in aquatic systems. Photolysis is one mechanism that can account for the large allochthonous DOC loss within northern temperate lakes. There is, however, little research examining the effects of photolysis on stable isotopes (e.g. δ¹³C and δ¹⁸O) in aquatic systems, or how photodegradation of DOM affects the δ¹³C of lake sediments. To study the effects of DOM photodegradation on carbon and oxygen isotopes, stream waters from catchments with varying peatland coverage were incubated in Tedlar bags placed in water baths under natural sunlight. Results from three streams flowing into two oligotrophic headwater lakes (Harp and Dickie Lakes) indicate that O₂ consumption rates and dissolved inorganic carbon (DIC) production rates were an order of magnitude greater in light exposed treatments than in dark treatments, suggesting that light mediated processes control O₂ consumption and DIC production in incubations. The similarity between filtered, inoculated, and sterile treatments, indicate that photolysis was the dominant O₂ consuming and DIC producing process in the incubations, while the contribution of respiration to these processes was not detectable. Differences in both O₂ consumption rates and DIC production rates (normalized to DOC loss) among streams suggest that DOM photolability was an important factor in both O₂ loss and DIC production on a volumetric basis. A concomitant increase in δ¹⁸O-O₂ was observed with O₂ loss indicating that during the photo-oxidation of DOM, the lighter ¹⁶O isotopomer was preferentially consumed in the oxidation of DOC to CO₂. Fractionation factors for respiration, photolysis and other abiotic reactions were not a function of O₂ consumption rates and ranged between 0.988 and 0.995, which lies outside the range published for respiration (0.975-0.982). These are the first published photolytic fractionation factors. The δ¹³C-DIC produced collectively by photolysis, respiration, and other abiotic reactions in incubations exposed to natural sunlight ranged between –23‰ and –31‰, and were similar in the light incubations for each treatment, but different among streams. Together, the light and dark incubation data suggest that photolysis and other abiotic reactions were largely responsible for the DIC concentration and δ¹³C-DIC changes observed, while respiration is a relatively minor contributor. During the incubations, as DOC photodegraded to CO₂, the lighter ¹²C isotope was preferentially mineralized (or the moieties cleaved were depleted in ¹³C) leaving the residual δ¹³C-DOC 1‰ to 4‰ enriched, creating enrichment (ε) values up to ~–3‰. The change in final δ¹³C-DOC after DOM photodegradation was different for each inflow, ranging from ~1 ‰ to 8.0 ‰, and provides an average enrichment of –2.1‰ (Harp Inflows ε: –1.2‰; Dickie Inflows ε: –3.4‰). These ε values are in agreement with the average ε from previous incubations on 3 of the inflows and 3 published studies based on UV exposed bog water (Osburn et al., 2001), riverine waters (Opsahl and Zepp, 2001), and lyophilized Juncus leachate dissolved in lake water (Vähätalo and Wetzel, 2008) (average ε = –2.9‰). The structure of DOM changed during photolysis. Absorbance data indicated that the aromaticity, colour, UV absorption and the average molecular size of the DOC decreased. Additionally, after exposure to sunlight, C/N ratios of the DOC changed from high values (24-55), indicative of terrestrial inputs, to lower values (4-13) traditionally thought to be representative of algal or microbial inputs. This contradicts the conventional view that terrestrial DOC has C/N ratios >20, and shows that abiotic processes can alter allochthonous carbon structure and the residual allochthonous carbon can have C/N values similar to, or overlapping with, C/N ratios expected from algal or microbial carbon. With the loss of 61-90% of the DOC, the particulate organic carbon (POC) created accounted for 20-90% of the DOC lost. Values of δ¹³C-POC ranged from –25.7‰ to –27.7‰, with 80% of the samples within 1‰ of the initial δ¹³C-DOC indicating that the particulate carbon created from the photodegradation of DOM that settles to the lake sediments could be isotopically similar to the source DOC. Overall, these incubations indicate that the photodegradation of DOM can affect both concentrations and isotopes of O₂, DIC, DOC, and POC of the stream waters flowing into Harp and Dickie Lakes and are important to consider in lake dynamics of high DOC retention lakes. Two independent methods were used to examine the importance of allochthonous DOC to lake sediments. The first method used a two end-member mixing model to estimate the proportion of allochthonous and autochthonous carbon within the lake sediments. Inflow δ¹³C-POC data, δ¹³C-leaf litter measurements, and DOC photodegradation experiments were used to calculate average annual δ¹³C-POC values for the allochthonous end member. The average annual δ¹³C-POC values for the autochthonous end member were calculated using estimates of productivity, surface δ¹³C-CO₂ values and estimated average annual fractionation factors. Average annual δ¹³C-POC values from allochthonous and autochthonous sources for these lakes were distinct. Using the end members to calculate the relative contributions of allochthonous and autochthonous carbon to lake sediments revealed that the δ¹³C of the lake sediment can be significantly affected by the ratio of autochthonous and allochthonous contributions. Furthermore, peaks in the allochthonous contributions of carbon accompany the δ¹³C peaks in the sediment records to the lake sediments. This suggests that climate change and/or anthropogenic changes to the landscape, and the concomitant changes in DOC inputs to lakes, can be recorded in the sediment record indicating that sediment records are not just productivity signals, but also mass balance signals in high DOC retention lakes. In the second method carbon isotope budgets were completed to accompany the carbon mass budgets for Harp and Dickie Lakes. Mass-weighted average annual δ¹³C-DOC values from the inflows and outflows and δ¹³C-DIC values from the inflows varied by 0.2‰ to 1.3‰, suggesting the values are well constrained. Conversely, the range of weighted δ¹³C-DIC values from the outflows were larger (2.2‰) than those of the inflows. Calculated δ¹³C values of the lake sediment were not equal to the measured δ13C values of the lake sediments for either Harp or Dickie Lakes suggesting a problem lies within the mass balances, or the weighted average annual δ¹³C values used in the isotope budgets. To examine the sensitivity of the average annual weighted δ¹³C values for the carbon entering and exiting the lakes, and the mass of carbon entering the lakes δ¹³C of the lake sediments, a mass and isotope budget model was created. The model indicated that the δ¹³C of the lake sediments is sensitive to a number of parameters including the amount of DOC entering the lake, the δ13C-CO2 evaded from the lake, the areal water discharge rate (qs), the gas exchange coefficient (k), and pH. Many of these parameters required adjustments for the masses of carbon to match those presented in the mass balances suggesting that the mass balances averaged over 8 years have errors associated with them. However, changing the DOC load to the lakes in the model by the variability observed over all the years of the mass balances) indicates that the isotopic signature of the lake sediment could change by up to 2.5‰. This isotope change is large enough to account for the historical δ¹³C changes observed in the δ¹³C sediment record, suggesting that allochthonous DOC can drive the sediment record.
34

Towards an Understanding of Dissolved Organic Matter Molecular Composition and Reactivity in the Environment

Cottrell, Barbara 07 January 2014 (has links)
Dissolved organic matter (DOM), one of the most complex naturally occurring mixtures, plays a central role in the biogeochemistry and the photochemistry of natural waters. A complete understanding of the environmental role of DOM will come only from the elucidation of the relationship between its structure and function. This thesis presents new work on the separation, characterization, and reactivity of DOM in rainwater, freshwater, and seawater. A new separation technique based on counterbalance capillary electrophoresis was developed for the separation of Suwannee River NOM. A comparative study of the organic content of rainwater was accomplished using nuclear magnetic resonance (NMR) with spectral database matching ,Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS), and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOFMS). Three complementary, non-overlapping datasets identified of over 400 compounds. Analysis of the FT-ICR-MS data using van Krevelen diagrams and the carbon oxidation state showed variation in the elemental composition and molecular size. Over 50% of the compounds identified in this study were known components of secondary organic aerosol (SOA) and volatile organic carbon (VOCs). Dissolved organic matter (DOM) plays a central role in the photochemistry of natural waters through the production of reactive oxygen species and the triplet excited state of DOM (3DOM*). These reactive species are central to the reactivity, transport, and fate of both natural and anthropogenic chemicals in the environment. Laser flash photolysis (LFP) was used to demonstrate that particulate organic matter (POM) generates a triplet excited state species (3POM*). LFP of seawater from the Pacific Ocean and the Bermuda Atlantic Time Series Station detected similar excited state species from surface to 4535m. Metal speciation has been implicated in the photochemistry of natural waters. Copper immobilized metal affinity chromatography (IMAC) of seawater and freshwater isolated a low and a high affinity fraction that generated excited state transients. Excitation-emission matrix spectroscopy showed that while the seawater fractions were autochthonous, freshwater fractions enriched in chromophoric DOM (CDOM), were allochthonous. The discovery of these different classes of compounds in freshwater and seawater has important implications both for the mineralization of DOM and the removal of xenobiotics in the aquatic environment.
35

Towards an Understanding of Dissolved Organic Matter Molecular Composition and Reactivity in the Environment

Cottrell, Barbara 07 January 2014 (has links)
Dissolved organic matter (DOM), one of the most complex naturally occurring mixtures, plays a central role in the biogeochemistry and the photochemistry of natural waters. A complete understanding of the environmental role of DOM will come only from the elucidation of the relationship between its structure and function. This thesis presents new work on the separation, characterization, and reactivity of DOM in rainwater, freshwater, and seawater. A new separation technique based on counterbalance capillary electrophoresis was developed for the separation of Suwannee River NOM. A comparative study of the organic content of rainwater was accomplished using nuclear magnetic resonance (NMR) with spectral database matching ,Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS), and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOFMS). Three complementary, non-overlapping datasets identified of over 400 compounds. Analysis of the FT-ICR-MS data using van Krevelen diagrams and the carbon oxidation state showed variation in the elemental composition and molecular size. Over 50% of the compounds identified in this study were known components of secondary organic aerosol (SOA) and volatile organic carbon (VOCs). Dissolved organic matter (DOM) plays a central role in the photochemistry of natural waters through the production of reactive oxygen species and the triplet excited state of DOM (3DOM*). These reactive species are central to the reactivity, transport, and fate of both natural and anthropogenic chemicals in the environment. Laser flash photolysis (LFP) was used to demonstrate that particulate organic matter (POM) generates a triplet excited state species (3POM*). LFP of seawater from the Pacific Ocean and the Bermuda Atlantic Time Series Station detected similar excited state species from surface to 4535m. Metal speciation has been implicated in the photochemistry of natural waters. Copper immobilized metal affinity chromatography (IMAC) of seawater and freshwater isolated a low and a high affinity fraction that generated excited state transients. Excitation-emission matrix spectroscopy showed that while the seawater fractions were autochthonous, freshwater fractions enriched in chromophoric DOM (CDOM), were allochthonous. The discovery of these different classes of compounds in freshwater and seawater has important implications both for the mineralization of DOM and the removal of xenobiotics in the aquatic environment.
36

Wastewater Contaminant Sorption and Dissolved Organic Matter Characterization

Mitchell, Perry 15 July 2013 (has links)
Irrigation using reclaimed wastewater can introduce organic contaminants and dissolved organic matter (DOM) to soils. Sorption of three common organic wastewater contaminants to five soils of diverse organic matter composition was studied both before and after the removal of soil carbohydrate and peptide components using acid hydrolysis. Results suggest that these polar components may block organic contaminants from accessing higher affinity sorption sites in soil organic matter. The sorptive fractionation of DOM by three mineral soils was studied to assess the terrestrial fate of this complex environmental matrix. Carboxyl- and aromatic-containing moieties appear to preferentially and reversibly sorb to mineral soils. Conversely, carbohydrate and peptide components of DOM preferentially remain in the aqueous phase while aliphatic moieties were selectively retained only by a soil with high surface area. This thesis illustrates that reclaimed wastewater should be applied to soils cautiously as it may degrade soil and groundwater quality.
37

Wastewater Contaminant Sorption and Dissolved Organic Matter Characterization

Mitchell, Perry 15 July 2013 (has links)
Irrigation using reclaimed wastewater can introduce organic contaminants and dissolved organic matter (DOM) to soils. Sorption of three common organic wastewater contaminants to five soils of diverse organic matter composition was studied both before and after the removal of soil carbohydrate and peptide components using acid hydrolysis. Results suggest that these polar components may block organic contaminants from accessing higher affinity sorption sites in soil organic matter. The sorptive fractionation of DOM by three mineral soils was studied to assess the terrestrial fate of this complex environmental matrix. Carboxyl- and aromatic-containing moieties appear to preferentially and reversibly sorb to mineral soils. Conversely, carbohydrate and peptide components of DOM preferentially remain in the aqueous phase while aliphatic moieties were selectively retained only by a soil with high surface area. This thesis illustrates that reclaimed wastewater should be applied to soils cautiously as it may degrade soil and groundwater quality.
38

Characterization of the dissolved organic matter in steam assisted gravity drainage boiler blow-down water

Guha Thakurta, Subhayan Unknown Date
No description available.
39

Dissolved Organic Matter in the Anthropogenically Impacted Grand River and Natural Burnt River Watersheds

Hutchins, Ryan H. S. 06 November 2014 (has links)
Dissolved organic carbon (DOM) is one of the largest cycled organic carbon pools on Earth and an important biogeochemical factor in aquatic systems. DOM can act as an energy source for microorganisms, alter the depth of the photic zone for photosynthesis, absorb harmful ultraviolet radiation, as well as alter the transport and toxicity of contaminants. The purpose of this research project was to characterize DOM in the Grand River watershed in Ontario, Canada using a wide range of qualitative and quantitative techniques and determine the impact of anthropogenic activities as well as seasonal and longitudinal changes on DOM processes. To reach the study objectives, historical data was analyzed to determine the seasonal cycle in the Grand River watershed. Intensive longitudinal sampling surveys were undertaken to evaluate the DOM characteristics and processes in the Grand River. Surveys of the less impacted Burnt River watershed were used as a comparison watershed to the Grand River to evaluate allochthonous and autochthonous indicators of DOM source and human impacts on DOM processes. Drinking water surveillance data was used to evaluate the effect of DOM in the Grand River on formation of disinfection by-products (DBPs). Different trends were seen in the Grand River in terms of longitudinal area and season. The headwaters of the river showed more autochthonous DOM in the spring and winter compared to the fall and summer. The lower-central river peaked in autochthonous DOM in the summer and was more allochthonous in the winter. DOM generally became more autochthonous downstream in the Grand River and was most autochthonous below the large sewage treatment plants (STPs) in the central portion. Protein content, measured as protein-like fluorescence normalized to DOC concentration, was strongly related to ??15N of DON; both are associated with autochthonous DOM in the Grand River and show the effects of the major STPs. The increase in autochthonous DOM below the STPs is likely associated with nutrient enrichment stimulating primary production and macrophyte growth. Based on the comparison of the Burnt River with the more impacted Grand River, the effect of lakes and photodegradation can make discrimination of autochthonous and allochthonous DOM more difficult. The ratio of DOC/DON and protein-like fluorescence proved to be robust indicators despite photodegradation. Human impacts on the Grand River watershed result in a greater seasonal cycle, high primary production in the summer and a downstream trend of increasing autochthonous DOM compared to the Burnt River. Based on drinking water surveillance data and literature review, autochthonous DOM caused greater DBPs in the drinking waters fed by the Grand River. This is currently a threat to human health and DBPs in sewage treatment plant effluent may be a threat to ecosystem health.
40

Effects of light and carbon on phytoplankton production and phyto-microzooplankton trophic interactions in the Baltic Sea: a mesocosm experiment

Rahman, Mohammad Habibur January 2015 (has links)
A mesocosm experiment with four triplicated treatments (control, clear carbon, pigment and dissolved organic matter) was carried out to investigate the effects of light (by pigment addition) and carbon (C) on phytoplankton communities and on the grazing pressure of microzooplankton on phytoplankton in the Baltic Sea. Phytoplankton concentration and species composition were determined by using an inverted microscope following the Utermöhl method. In order to measure differences in phyto-zooplankton trophic interactions between treatments, a dilution experiment was performed at the end of the mesocosm experiment. Surprisingly, the results show that light attenuation was beneficial to phytoplankton production while carbon enrichment had negative effects on phytoplankton production, the highest phytoplankton production was in the low light treatment and lowest phytoplankton production was in the clear C treatment. Cyanobacteria were the most dominant group, representing over 95% of the phytoplankton community. Diatoms were the least dominant group, representing less than 5% of the phytoplankton community. Microzooplankton grazing pressure was affected by light attenuation and C enrichment. Grazing pressure was highest on cyanobacteria in the clear C treatment, but chrysophytes experienced low grazing pressure and had high growth rates in the Control treatment where microzooplankton fed selectively on chrysophytes. The least abundant group, diatoms, decreased although they experienced no grazing pressure in the Control and clear C treatments. This experiment resulted in two surprising findings. First, increased light intensity reduced phytoplankton biomass, especially in the clear C treatment, and second, cyanobacteria constituted an important food source for microzooplankton grazers. This study adds to the increasing evidence that light effects can be counterintuitive and that cyanobacteria are not necessarily grazing resistant and can meditate nutrient transport to higher trophic levels.

Page generated in 0.1232 seconds