• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 18
  • 12
  • 10
  • 8
  • 4
  • 3
  • 1
  • Tagged with
  • 157
  • 157
  • 157
  • 33
  • 26
  • 26
  • 25
  • 24
  • 22
  • 17
  • 17
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

ORGANIC MATTER SOURCES AND FLOWS IN TUNDRA POND FOOD WEBS

Plesh, Steven Paul 01 December 2021 (has links)
Arctic tundra wetlands support abundant waterbirds, but invertebrate prey communities may change with climate warming. Increased influx of nutrients and labile dissolved organic matter (DOM) from thawing permafrost may alter the relative importance of organic matter (OM) sources, with associated changes in relative biomass of taxa dependent on different sources. In six wetland types, we used stable isotopes (δ13C, δ15N) to compare contributions of four OM sources (periphytic microalgae, cyanobacteria, macrophytes, and peat) to the diets of nine macroinvertebrate taxa. Relative OM contributions within invertebrate taxa were similar among wetland types. Cyanobacteria comprised only 2–7% of OM sources for all taxa in shallow wetland types (<1 m), but up to 25% for oligochaetes and Physidae in deeper wetlands. Macrophytes were minor OM sources (<13%) in all wetland types except deep open lakes (21–26%). Peat typically comprised 20–40% of OM sources except for Physidae (mostly 50–80%). Microalgae were the dominant OM source for most taxa (47–78%, mean ⁓60%), although less for Oligochaeta and much less for Physidae (9–32%). High periphyton production with very depleted δ13C values likely results from continuous daylight illuminating shallow depths, high N and P levels, and very high pCO2 derived from bacterial respiration of DOM leached from thawing permafrost. Invertebrate consumption of microalgae and peat appears often to involve bacterial intermediates. Impacts of warming on invertebrate prey availability will likely depend not on shifts in OM sources, but on changes in overall area or number of shallow ponds.
52

In-Stream Reactivity of Dissolved Organic Matter and Nutrients in Proglacial Watersheds

Nassry, Michael Quinn 04 May 2013 (has links)
The unique landscape controls and meltwater contributions associated with glacial landcover along the coast of southeast Alaska were examined to better understand in-stream processing of dissolved organic matter (DOM) and nutrients during downstream transport. Specifically, this study paired glacial streams with nearby non-glacial streams and compared differences in landscape controls to: 1) evaluate the impact of glacial landcover and meltwater contributions on in-stream metabolism and uptake potential of proglacial streams; 2) quantify changes in DOM composition and concentration in glacial runoff during precipitation-driven flushing of a glaciated landscape; and 3) characterize the impact of glacial landcover and meltwater contributions on longitudinal trends in the physical and chemical signature of streamwater through changing watershed landscapes. Stream metabolism estimates suggested glacial streams receive little DOM from landscape sources and have the potential to function as net autotrophic systems under low flow regimes with unobstructed sunlight. Unlike most watersheds, shallow organic soils and low in-stream respiration rates associated with glacial systems resulted in near equilibrium dissolved CO₂ concentrations, with little flux to the atmosphere. Longitudinal stream analyses concluded low-elevation landscape discharge contributions had little influence on glacial streams compared to non-glacial streams. High specific discharge from glacial landscapes controlled streamwater chemistry throughout proglacial watersheds suggesting meltwater was delivered from the terminus of coastal glaciers downstream to the Gulf of Alaska (GOA) with little dilution or in-stream processing. Uniform concentrations of DOM and nutrients were found during increased discharge driven by precipitation on the glaciated watershed. This was in contrast to the non-glacial watershed, where streamwater DOM concentrations were largely controlled by connections to DOM-rich landscape sources during storm flows. Results from this study enhance the understanding of in-stream processes and landscape controls in watersheds that deliver freshwater to an ecologically productive marine zone and valuable commercial fishery. Furthermore, this study provides information about watersheds undergoing glacial recession to GOA basin-wide estimates of DOM export and future research initiatives focusing on in-stream DOM processing. / Ph. D.
53

Influence of Operational Characterization Methods on DOM Physicochemical Properties and Reactivity with Aqueous Chlorine

Tadanier, Christopher J. 22 June 1998 (has links)
The physicochemical properties and chemical reactivity of dissolved organic matter (DOM) are of tremendous practical significance in both natural and engineered aquatic and terrestrial systems. DOM is frequently extracted, fractionated, and concentrated from environmental samples using a variety of operationally defined physical and chemical processes in order to facilitate study of specific physicochemical properties and aspects of its chemical reactivity. This study was conducted to systematically examine the influence of operationally defined physical and chemical characterization methods on observed DOM physicochemical properties and reactivity with aqueous chlorine. The effects of chemical separation were evaluated by applying an existing resin adsorption based procedure which simultaneously extracts and fractionates DOM and inorganic constituents into hydrophobic and hydrophilic acid, base, and neutral dissolved material matrix (DMM) fractions. Physical separation based on DOM apparent molecular weight (AMW) was also evaluated using batch ultrafiltration (UF) data in conjunction with a suitable membrane permeation model. Linear independence of membrane solute transport was theoretically described using non-equilibrium thermodynamics and experimentally demonstrated for AMICON® YC/YM series UF membranes. Mass balances on DMM fraction constituents in untreated and previously coagulated natural waters indicated that quantitative recovery (100 ± 2%) of DOM constituents was achieved, while recovery of inorganic constituents such as iron and aluminum was substantially incomplete (30%-74%). Comparison of whole-water DOM properties with those mathematically reconstituted from DMM fractions demonstrated a marked shift in DOM properties toward lower AMW. Evidence of pH induced partial hydrolysis of protein, polysaccharide, and ester DOM components was also observed. Decreased specific Cl2 demand (mmol DCl2/ mmol DOM) and specific trihalomethane formation (mmol THM/mmol DOM) following chemical fractionation were attributed to increased molar DOM concentration and decreased DOM association with colloidal iron oxide surfaces. Collectively, the results of this research indicate that operational characterization methods result in alteration of DOM physicochemical properties and reactivity with aqueous chlorine, and caution is therefore advisable when interpreting the results of studies conducted using chemically extracted or fractionated DOM. / Ph. D.
54

Influence of Land Use, Land Cover, and Hydrology on the Spatial and Temporal Characteristics of Dissolved Organic Matter (DOM) in Multiple Aquatic Ecosystems

Singh, Shatrughan 11 August 2017 (has links)
Spatial and temporal patterns of dissolved organic matter (DOM) were characterized using a combination of spectroluorometric measurements and multivariate analysis techniques. The study was conducted over a four-year (2012-2016) period in multiple watersheds located in the Gulf-Atlantic Coastal Plain Physiographic region of the southeast USA as well as in the Indo-Gangetic Plain of India. Surface water samples were collected from five major lakes in the Mississippi, an estuarine region in the southeastern Louisiana, and from the coastal region in the eastern Mississippi Sound in the USA, and a large river (Ganges River) in India. Absorption and fluorescence measurements were performed to generate absorption spectra and excitation-emission matrices (EEMs). Using parallel factor analyses (PARAFAC), EEM models were developed to characterize the biogeochemistry of DOM in three studies in this project. Principal component analysis and regression analyses of DOM data indicated that the northern Mississippi lakes were majorly influenced by agricultural land use, estuarine region was affected by natural DOM export from forests and wetlands, while the coastal waters were affected by a mix of anthropogenic and natural inputs of DOM. Spatial analyses indicated that DOM derived from watershed with increased wetland coverage was humic and aromatic while the DOM derived from agricultural watersheds was bioavailable. Temporal patterns of DOM in the estuary indicated the influence of hydrologic conditions and summer temperatures, and revealed strong seasonality in DOM evolution in the watershed. During high discharge periods (spring), aromatic and humic DOM was exported from the watershed while strong photochemical degradation during summer resulted bioavailable DOM. Comparison between two river systems, a highly urbanized large river and a small pristine river, indicated the influence of anthropogenic inputs of DOM in the large river system. DOM was bioavailable during summer due to anthropogenic activities in the large river system while it varied with hydrological connectivity in a small river system during summer and winter. In conclusion, this study has improved my understandings of the DOM properties, which are critical for a comprehensive assessment of biogeochemical processes undergoing in important water bodies on which our society is heavily dependent upon.
55

Influence of logging residues on MeHg accumulation in soil / Påverkan av avverkningsrester på ackumulering av MeHg i mark

Blomgren, Axel January 2018 (has links)
Forestry has been found to increase the accumulation of methyl mercury (MeHg), a highly neurotoxic compound, in forest soils. However, little is known about how forestry influences catchment processes that governs the mercury (Hg) methylation process. Logging residues are used in harvested catchments in stick roads to reduce soil disturbances caused by forestry machinery. Logging residues left on site after harvest have been suggested to act as a source of high-quality organic matter that stimulates the activity of the microorganisms that carry out the methylation of Hg. In addition, logging residues might influence the activity and abundance of methylating bacteria by reducing the temperature fluctuations in soils below residues and by increasing the soil moisture content. To evaluate the impact of logging residues on the accumulation of MeHg, an experimental field study was carried out in three sites, one in Uppland and two in Västerbotten. The concentration of MeHg was compared between soils covered with residues and soils without residues, and between the lower and upper parts residue piles. Logging residues were not found to influence the levels of MeHg in soils. However, an increased accumulation of MeHg was found in the lower part of residue piles. The accumulation of MeHg in the lower parts was accompanied by a reduced temperature amplitude and an increased water content compared to the upper part of the piles. The increased formation of MeHg might have been mediated by an increased water content in the lower part of the residue piles, possibly by increasing the abundance and activity of Hgmethylating microorganisms due to suboxic/anoxic conditions within biofilms around decomposing needles. The dissolved organic matter composition in soil water differed in soils below residues compared to without residues, but the organic matter signature in soil water under residues was not found to be compliant with an elevated mercury methylation rate. As MeHg accumulated in the lower part of residue piles could become mobilized and transferred to surface water, the suitability of using logging residues in stick roads depends on the location within the catchment. The removal of logging residues could prevent the potential mobilization of MeHg from residue piles. Though, as soil disturbances may cause an increased Hg methylation rate and mediate MeHg export to surface waters, other form of protection, e.g. logging mats, should be used if logging residues are not used to protect soils. / Mänsklig aktivitet har lett till förhöjda halter av kvicksilver (Hg) i atmosfären. Genom långväga transport och deposition har detta orsakat förhöjda halter i svensk natur. Den huvudsakliga exponeringsvägen av Hg för människan sker genom konsumtion av fisk. Halterna av Hg i svensk insjöfisk överstiger EU:s gränsvärden för god kemisk status samt Världshälsoorganisationens riktlinjer för konsumtion i majoriteten av svenska vatten. Ackumuleringen av Hg i biota sker främst i form av metylkvicksilver (MeHg) som är starkt neurotoxiskt. Avverkning av skog tros bidra till en ökad bildning av MeHg i skogsmark genom att skapa miljöer som gynnar etableringen och aktiviteten av de mikroorganismer som omvandlar icke-organiskt kvicksilver (Hg(II)) till organiskt kvicksilver (MeHg). Dessutom kan skogsbruk bidra till en ökad export av MeHg till följd av ändrade hydrologiska förhållanden samt markskador. En ökad bildning av MeHg är oönskad då mobilisering sedermera kan ske till vattendrag där MeHg kan ackumuleras i akvatisk biota. Dock är kunskapen om hur skogsbruk påverkar specifika processer som är av betydelse för metyleringen av Hg begränsad. Inom skogsbruk används avverkningsrester, bestående av till exempel grenar och toppar, i rishögar för att skydda marken mot körskador. Avverkningsrester som lämnas kvar på området efter avverkning tros bidra till en ökad metylering genom att utgöra en källa av högkvalitativt organiskt material vilket kan stimulera bakteriell aktivitet. Dessutom kan avverkningsrester bidra till en ökad metylering av Hg genom att minska temperaturfluktuationerna i mark täckt med ris samt öka markens vattenhalt, vilket kan bidra till en ökad etablering samt att stimulera aktiviteten av Hg-metylerande mikroorganismer. För att utvärdera effekten av avverkningsrester på ackumuleringen av MeHg genomfördes en experimentell fältstudie där koncentrationen av MeHg jämfördes i mark täckt med ris och mark utan ris. Dessutom undersöktes huruvida en ökad metylering kan ske i den nedre delen av riset, vilket skulle kunna möjliggöras av bakterier i biofilmer kring ris under nedbrytning. Koncentrationen MeHg var högre i den nedre delen av rishögarna jämfört med den övre delen. I den nedre delen av riset var temperaturfluktuationerna lägre och vattenhalten högre än i den övre delen av riset. Ackumuleringen av MeHg kan ha skett via biofilmer i de nedre delarna av riset, där tillgången till hög kvalitativt organiskt material samt mer syrefria förhållanden kan ha gynnat etableringen och aktiviteten av de bakterier som utför metyleringen av Hg. Däremot hade typen av marktäcke, dvs mark täckt med ris och mark utan ris, inte någon påverkan på metyleringen av Hg. Karaktären av organiskt material i markvatten skiljde sig mellan typ av marktäcke, men visar inte på att avverkningsrester utgör en källa av högkvalitativt organiskt material. Vattenhalten i mark under rishögar skiljde sig inte jämfört med mark utan ris, men temperaturen var lägre med mindre variation i mark under rishögar. Därmed visar resultatet på att avverkningsrester kan bidra till en ökad bildning av MeHg. En potentiell mobilisering av MeHg som bildats i rishögarna skulle därför kunna bidra till en ökad export av MeHg från avverkade områden. Användningen av avverkningsrester, för att skydda marken vid körning med skogsmaskiner, anses ändå vara fördelaktig för att minimera utläckage av MeHg. Körskador kan skapa stående vattensamlingar där MeHg kan bildas samt kompaktera mark och skapa snabba ytliga flödesvägar i området. Däremot tyder resultatet på att användningen bör ske med hänsyn till att förhindra eventuell transport av MeHg till vattendrag. Ifall avverkningsrester inte används för att motverka markskador bör ett substitut användas, exempelvis stock-mattor, då körskador kan bidra till en ökad metylering och mobilisering av MeHg. Dock saknas kunskap om eventuell mobilisering av MeHg från rishögar till vattendrag och detta bör utvärderas i framtida studier.
56

Dissolved Organic Matter Influences the Timing of Embryonic Development of the Purple Sea Urchin, Strongylocentrotus purpuratus.

Hodges, Corbin J 01 December 2009 (has links) (PDF)
Marine dissolved organic matter (DOM) comprises one of the largest carbon reservoirs on earth and has long been considered a potential energy source for marine invertebrates. The importance of DOM transport has been adequately demonstrated for unicellular organisms, where DOM can meet 100% of an organisms energy needs, but the effects of DOM uptake for marine metazoans are less well understood. In this study, three general areas involving the influence of DOM transport to marine invertebrates were explored. First, we assessed the effects of using seawater exposed to high intensity ultraviolet radiation (UVR) on the study organism; embryos of the purple sea urchin, Strongylocentrotus purpuratus. This was important because we used seawater treated in this way to create water types used in the experiments. Exposing seawater to high intensity UVR oxidizes (and functionally removes) DOM in the seawater. Second, the influence of the presence of DOM on the timing of embryonic development was examined for embryos of S. purpuratus. Specifically, the time of cell division and the time of hatching were determined for embryos in seawater with and without DOM. Finally, the ability of DOM to moderate the negative effect of UV-exposure on time of cell division was assessed. To make these comparisons experiments were performed using three water types: FSW (0.22 micron filtered seawater), DOM-depleted seawater (UV oxidized 0.22 micron filtered seawater), and DOM-enriched seawater (UV oxidized 0.22 micron filtered seawater enriched with labile DOM). In the first experiment, batches of embryos in the three water types were either exposed or not exposed to ultra-violet radiation and the time of first cell division was compared for embryos across the six treatments. In the second experiment, batches of embryos were placed in the same three water types and the time of first cell division and the time of hatching were quantified. From these experiments several results were generated. First, seawater exposed to high intensity UVR did not influence the timing of development of embryos of S. purpuratus. Embryos in water exposed to high intensity UVR (DOM-enriched and DOM-depleted seawater) hatched at similar times and completed first cell division at times similar to embryos in water not exposed to high intensity UVR (FSW). Next, we found that the influence of the presence of DOM on the development timing of S. purpuratus embryos depended on the event that was examined. The time of first cell division was not affected by the presence of DOM but the time of hatching was. Embryos in water with dissolved organic matter hatched on average 86 minutes later than embryos in water without DOM. Potentially, embryos in seawater without DOM speed up development to more quickly reach the point that they can feed on particulates. Lastly, the presence of DOM did not influence UVR-induced cleavage delay. The percent cleavage delay was not significantly different for embryos in seawater with (DOM-enriched) and without (DOM-depleted) DOM. In addition to the experiments, all studies in the literature that examine the realized effects of DOM transport were analyzed to ascertain when the manifestation of DOM uptake is most likely to occur. From these results, it appears that the effects of DOM transport are most likely to manifest after the life stage in which the majority of uptake occurred. If DOM transport has an affect within a life stage it is most likely to manifest as moderation of biomass loss or maintenance of endogenous reserves. With the addition of the experimental results from this study to the information already in the literature we begin to more fully grasp the importance of DOM transport to S. purpuratus. DOM influences the time of hatching, biomass, arm length, and stomach size of the species; results that highlight the importance of examining multiple affects of DOM transport for a single species. In conclusion, future research should look for multiple effects of the presence of DOM both within and across life stages (for a single species) to better understand the importance of DOM to marine invertebrates.
57

In situ fluorescence measurements of dissolved organic matter: a review

Carstea, E.M., Popa, C.L., Baker, A., Bridgeman, John 09 September 2019 (has links)
Yes / There is a need for an inexpensive, reliable and fast monitoring tool to detect contaminants in a short time, for quick mitigation of pollution sources and site remediation, and for characterization of natural dissolved organic matter (DOM). Fluorescence spectroscopy has proven to be an excellent technique in quantifying aquatic DOM, from autochthonous, allochthonous or anthropogenic sources. This paper reviews the advances in in situ fluorescence measurements of DOM and pollutants in various water environments. Studies have demonstrated, using high temporal-frequency DOM fluorescence data, that marine autochthonous production of DOM is highly complex and that the allochthonous input of DOM from freshwater to marine water can be predicted. Furthermore, river measurement studies found a delayed fluorescence response of DOM following precipitation compared to turbidity and discharge, with various lags, depending on season, site and input of dissolved organic carbon (DOC) concentration. In addition, research has shown that blue light fluorescence (λemission = 430–500 nm) can be a good proxy for DOC, in environments with terrestrial inputs, and ultraviolet fluorescence (λemission = UVA–320–400 nm) for biochemical oxygen demand, and also E. coli in environments with sanitation issues. The correction of raw fluorescence data improves the relationship between fluorescence intensity and these parameters. This review also presents the specific steps and parameters that must be considered before and during in situ fluorescence measurement session for a harmonized qualitative and quantitative protocol. Finally, the strengths and weaknesses of the research on in situ fluorescence are identified. / Authors, E.M. Carstea and C.L. Popa, acknowledge the support of the Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2016-0646, within PNCDI III, project number 18N/2019, under the Core Program OPTRONICA VI, project number 19PFE/17.10.2018 and project number 152/2016, SMIS 108109.
58

Cycling of Bioavailable Carboxyl-Rich Alicyclic Molecules and Carbohydrates in Baffin Bay

McKee, Kayla 13 July 2023 (has links)
At ~662 gigatonnes of carbon (GtC), marine dissolved organic matter (DOM) is the largest reduced pool of actively cycling carbon and nitrogen in the oceans1. Operationally defined as smaller than 0.1µm in size, this carbon reservoir comprises all non-living organic matter smaller than a bacterial cell and comprises organic colloids and molecules spanning as a continuum of sizes ranging from marine viruses and large macromolecules (e.g. DNA, enzymes) to small organic molecules (e.g. polymers and monomers)2. With deep apparent 14C-ages ranging between 4900-6400 ybp 3,4, marine DOM is anomalously old given timescales of global ocean ventilation (1000-1500 years). The great age of DOM has remained one of the most elusive lines of scientific inquiry in Chemical Oceanography for decades. The size and molecular composition of DOM has been shown to be a key variable in determining its biological reactivity (e.g. cycling rate) and long-term persistence in the deep ocean5,6. Despite the importance of DOM in the marine carbon and nitrogen cycles, we lack a detailed understanding of the molecular composition of DOM. Due to the high concentration of salts in seawater relative to DOM, it is difficult to analyze the molecular composition of seawater with conventional chemical- or size- fractionation methods without introducing bias (i.e. isolating only hydrophobic and/or high molecular weight DOM). In fact, it is commonly reported that >80% of DOM remains uncharacterized at the molecular level (e.g. not readily identifiable as an individual known biomolecule)5. Nuclear magnetic resonance (NMR) spectroscopy has been used as a tool for several decades to describe the composition of marine DOM isolates7. For example, 13C-NMR of major high molecular weight DOM functional groups at the molecular-level demonstrated that DOM is largely made up of reactive polysaccharides with low aromaticity compared to terrestrial DOM8. To date, all marine DOM NMR measurements have been made on size-fractionated DOM or chemically-fractionated (e.g. solid phase extracted) DOM isolates. In this thesis, I report the first Proton (1H) NMR composition of total seawater DOM from seawater samples collected from 10 stations in Baffin Bay aboard the CCGS Amundsen (2019). Samples were measured using 1H-NMR at uOttawa following a novel water suppression method established by Lam and Simpson9. The use of this method has allowed for the first molecular composition assessment of total seawater DOM to be measured (e.g. without any chemical or size fractionation). I report the % relative abundance of individual biomarkers and determine molar concentrations of two compound classes of interest. These results are shown in Ocean Data View section plots, and are listed within appendix tables, to provide a comprehensive depiction of the changing concentrations of dissolved organic carbon (DOC), total carbohydrates (TCHO), and carboxyl-rich alicyclic molecules (CRAM). In this thesis, I explore changes in the abundance of these unique DOM compound classes and discuss how the composition of DOM directly determines its bioavailability and thus cycling in Baffin Bay 5. The core objective of my thesis was to measure DOM concentrations for TCHO and CRAM, as well as to calculate the production and removal of these key DOM compounds in Baffin Bay due to either physical and/or biological processes. We found that the concentration of both TCHO and CRAM decreased with depth throughout Baffin Bay. This is consistent with previous work suggesting the rapid cycling of carbohydrates, however it contradicts the current paradigm of CRAM cycling. Our results indicate between 21-43% of CRAM produced in the surface is subsequently removed at depth. Rapid cycling of a surface CRAM population suggests that not all CRAM can be considered recalcitrant DOM We live in a time of unprecedented global change. The Arctic Ocean is warming at a rate at least four times faster than the global average10. The impact of a rapidly warming, freshening and increasingly acidified Arctic Ocean on the biogeochemistry of DOM remains unknown. It is imperative that more DOM research be conducted as early as possible in order to better understand these impacts and inform future research directions. The distribution and cycling of CRAM in Baffin Bay provide novel and fundamental knowledge of DOM cycling in a key Arctic region, but could also potentially occur throughout the global ocean. Such data will no doubt be of use in informing future iterations of Earth System Climate models seeking to forecast how the marine carbon cycle will respond to global change.
59

The Study of Molecular Composition of Dissolved Organic Matter in Two Different Ecosystems: Inle Lake and Bago Mountains in Myanmar / 2つの異なる生態系における溶存有機物質の分子組成に関する研究: ミャンマー, インレー湖およびバゴ山地

Tint, May Thet Su Kyaw 23 January 2023 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第24325号 / 農博第2530号 / 新制||農||1096(附属図書館) / 学位論文||R5||N5427(農学部図書室) / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 德地 直子, 教授 柴田 昌三, 教授 舘野 隆之輔 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
60

Remote sensing of colored dissolved organic matter using unmanned aerial systems and assessment of the influence of dissolved organic matter on the oyster reefs in the western Mississippi sound

Galapita Pallayapelage, Sudeera Wickramarathna 09 August 2019 (has links)
Oyster reefs in the western Mississippi Sound (WMS) are dependent on the salinity moderation by freshwater input. However, freshwater brings in high amount of pollutants, which affect the oysters negatively. Oyster diebacks happened as a result of hypoxia caused by excessive organic matter input to WMS in summer 2017. Colored dissolved organic matter (CDOM) is widely used as a proxy for determining organic matter distribution. In this study, hyperspectral and multispectral remote sensing data collected using unmanned aerial systems and in situ CDOM data were used to develop algorithms in order to retrieve CDOM remotely. Collected physical and biogeochemical parameters were used to understand the carbon fluxes regulating the quality and quantity of CDOM. Developed algorithms showed high accuracy after accounting for seasonal variations of CDOM. Further, seasonal induced photodegradation, photosynthesis, calcification, and exchange of CO2 were identified as possible factors that affect the carbon dynamics in the study area.

Page generated in 0.0677 seconds