Spelling suggestions: "subject:"distância dde jeffreysianus"" "subject:"distância dde jeffreysii""
1 |
Seleção de características: abordagem via redes neurais aplicada à segmentação de imagens / Feature selection: a neural approach applied to image segmentationSantos, Davi Pereira dos 21 March 2007 (has links)
A segmentaçãoo de imagens é fundamental para a visão computacional. Com essa finalidade, a textura tem sido uma propriedade bastante explorada por pesquisadores. Porém, a existência de diversos métodos de extração de textura, muitas vezes específicos para determinadas aplicações, dificulta a implementação de sistemas de escopo mais geral. Tendo esse contexto como motivação e inspirado no sucesso dos sistemas de visão naturais e em sua generalidade, este trabalho propõe a combinação de métodos por meio da seleção de características baseada na saliência das sinapses de um perceptron multicamadas (MLP). É proposto, também, um método alternativo baseado na capacidade do MLP de apreender textura que dispensa o uso de técnicas de extração de textura. Como principal contribuição, além da comparação da heurística de seleção proposta frente à busca exaustiva segundo o critério da distância de Jeffrey-Matusita, foi introduzida a técnica de Equalização da Entrada, que melhorou consideravelmente a qualidade da medida de saliência. É também apresentada a segmentação de imagens de cenas naturais, como exemplo de aplicação / Segmentation is a crucial step in Computer Vision. Texture has been a property largely employed by many researchers to achieve segmentation. The existence of a large amount of texture extraction methods is, sometimes, a hurdle to overcome when it comes to modeling systems for more general problems. Inside this context and following the excellence of natural vision systems and their generality, this work has adopted a feature selection method based on synaptic conexions salience of a Multilayer Perceptron and a method based on its texture inference capability. As well as comparing the proposed method with exhaustive search according to the Jeffrey-Matusita distance criterion, this work also introduces, as a major contribution, the Input Equalization technique, which contributed to significantly improve the segmentation results. The segmentation of images of natural scenes has also been provided as a likely application of the method
|
2 |
Seleção de características: abordagem via redes neurais aplicada à segmentação de imagens / Feature selection: a neural approach applied to image segmentationDavi Pereira dos Santos 21 March 2007 (has links)
A segmentaçãoo de imagens é fundamental para a visão computacional. Com essa finalidade, a textura tem sido uma propriedade bastante explorada por pesquisadores. Porém, a existência de diversos métodos de extração de textura, muitas vezes específicos para determinadas aplicações, dificulta a implementação de sistemas de escopo mais geral. Tendo esse contexto como motivação e inspirado no sucesso dos sistemas de visão naturais e em sua generalidade, este trabalho propõe a combinação de métodos por meio da seleção de características baseada na saliência das sinapses de um perceptron multicamadas (MLP). É proposto, também, um método alternativo baseado na capacidade do MLP de apreender textura que dispensa o uso de técnicas de extração de textura. Como principal contribuição, além da comparação da heurística de seleção proposta frente à busca exaustiva segundo o critério da distância de Jeffrey-Matusita, foi introduzida a técnica de Equalização da Entrada, que melhorou consideravelmente a qualidade da medida de saliência. É também apresentada a segmentação de imagens de cenas naturais, como exemplo de aplicação / Segmentation is a crucial step in Computer Vision. Texture has been a property largely employed by many researchers to achieve segmentation. The existence of a large amount of texture extraction methods is, sometimes, a hurdle to overcome when it comes to modeling systems for more general problems. Inside this context and following the excellence of natural vision systems and their generality, this work has adopted a feature selection method based on synaptic conexions salience of a Multilayer Perceptron and a method based on its texture inference capability. As well as comparing the proposed method with exhaustive search according to the Jeffrey-Matusita distance criterion, this work also introduces, as a major contribution, the Input Equalization technique, which contributed to significantly improve the segmentation results. The segmentation of images of natural scenes has also been provided as a likely application of the method
|
Page generated in 0.0732 seconds