• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seleção de características: abordagem via redes neurais aplicada à segmentação de imagens / Feature selection: a neural approach applied to image segmentation

Santos, Davi Pereira dos 21 March 2007 (has links)
A segmentaçãoo de imagens é fundamental para a visão computacional. Com essa finalidade, a textura tem sido uma propriedade bastante explorada por pesquisadores. Porém, a existência de diversos métodos de extração de textura, muitas vezes específicos para determinadas aplicações, dificulta a implementação de sistemas de escopo mais geral. Tendo esse contexto como motivação e inspirado no sucesso dos sistemas de visão naturais e em sua generalidade, este trabalho propõe a combinação de métodos por meio da seleção de características baseada na saliência das sinapses de um perceptron multicamadas (MLP). É proposto, também, um método alternativo baseado na capacidade do MLP de apreender textura que dispensa o uso de técnicas de extração de textura. Como principal contribuição, além da comparação da heurística de seleção proposta frente à busca exaustiva segundo o critério da distância de Jeffrey-Matusita, foi introduzida a técnica de Equalização da Entrada, que melhorou consideravelmente a qualidade da medida de saliência. É também apresentada a segmentação de imagens de cenas naturais, como exemplo de aplicação / Segmentation is a crucial step in Computer Vision. Texture has been a property largely employed by many researchers to achieve segmentation. The existence of a large amount of texture extraction methods is, sometimes, a hurdle to overcome when it comes to modeling systems for more general problems. Inside this context and following the excellence of natural vision systems and their generality, this work has adopted a feature selection method based on synaptic conexions salience of a Multilayer Perceptron and a method based on its texture inference capability. As well as comparing the proposed method with exhaustive search according to the Jeffrey-Matusita distance criterion, this work also introduces, as a major contribution, the Input Equalization technique, which contributed to significantly improve the segmentation results. The segmentation of images of natural scenes has also been provided as a likely application of the method
2

Seleção de características: abordagem via redes neurais aplicada à segmentação de imagens / Feature selection: a neural approach applied to image segmentation

Davi Pereira dos Santos 21 March 2007 (has links)
A segmentaçãoo de imagens é fundamental para a visão computacional. Com essa finalidade, a textura tem sido uma propriedade bastante explorada por pesquisadores. Porém, a existência de diversos métodos de extração de textura, muitas vezes específicos para determinadas aplicações, dificulta a implementação de sistemas de escopo mais geral. Tendo esse contexto como motivação e inspirado no sucesso dos sistemas de visão naturais e em sua generalidade, este trabalho propõe a combinação de métodos por meio da seleção de características baseada na saliência das sinapses de um perceptron multicamadas (MLP). É proposto, também, um método alternativo baseado na capacidade do MLP de apreender textura que dispensa o uso de técnicas de extração de textura. Como principal contribuição, além da comparação da heurística de seleção proposta frente à busca exaustiva segundo o critério da distância de Jeffrey-Matusita, foi introduzida a técnica de Equalização da Entrada, que melhorou consideravelmente a qualidade da medida de saliência. É também apresentada a segmentação de imagens de cenas naturais, como exemplo de aplicação / Segmentation is a crucial step in Computer Vision. Texture has been a property largely employed by many researchers to achieve segmentation. The existence of a large amount of texture extraction methods is, sometimes, a hurdle to overcome when it comes to modeling systems for more general problems. Inside this context and following the excellence of natural vision systems and their generality, this work has adopted a feature selection method based on synaptic conexions salience of a Multilayer Perceptron and a method based on its texture inference capability. As well as comparing the proposed method with exhaustive search according to the Jeffrey-Matusita distance criterion, this work also introduces, as a major contribution, the Input Equalization technique, which contributed to significantly improve the segmentation results. The segmentation of images of natural scenes has also been provided as a likely application of the method
3

Identificação de espécies vegetais por meio de análise de imagens microscópicas de folhas / Identification of vegetal species by analysis of microscope images of leaves

Sá Junior, Jarbas Joaci de Mesquita 18 April 2008 (has links)
A taxonomia vegetal atualmente exige um grande esforço dos botânicos, desde o processo de aquisição do espécime até a morosa comparação com as amostras já catalogadas em um herbário. Nesse contexto, o projeto TreeVis surge como uma ferramenta para a identificação de vegetais por meio da análise de atributos foliares. Este trabalho é uma ramificação do projeto TreeVis e tem o objetivo de identificar vegetais por meio da análise do corte transversal de uma folha ampliado por um microscópio. Para tanto, foram extraídas assinaturas da cutícula, epiderme superior, parênquima paliçádico e parênquima lacunoso. Cada assinatura foi avaliada isoladamente por uma rede neural pelo método leave-one-out para verificar a sua capacidade de discriminar as amostras. Uma vez selecionados os vetores de características mais importantes, os mesmos foram combinados de duas maneiras. A primeira abordagem foi a simples concatenação dos vetores selecionados; a segunda, mais elaborada, reduziu a dimensionalidade (três atributos apenas) de algumas das assinaturas componentes antes de fazer a concatenação. Os vetores finais obtidos pelas duas abordagens foram testados com rede neural via leave-one-out para medir a taxa de acertos alcançada pelo sinergismo das assinaturas das diferentes partes da folha. Os experimentos consitiram na identificação de oito espécies diferentes e na identificação da espécie Gochnatia polymorpha nos ambientes Cerrado e Mata Ciliar, nas estações Chuvosa e Seca, e sob condições de Sol e Sombra / Currently, taxonomy demands a great effort from the botanists, ranging from the process of acquisition of the sample to the comparison with the species already classified in the herbarium. For this reason, the TreeVis is a project created to identify vegetal species using leaf attributes. This work is a part of the TreeVis project and aims at identifying vegetal species by analysing cross-sections of leaves amplified by a microscope. Signatures were extract from cuticle, adaxial epiderm, palisade parenchyma and sponge parenchyma. Each signature was analysed by a neural network with the leave-one-out method to verify its ability to identify species. Once the most important feature vectors were selected, two different approachs were adopted. The first was a simple concatenation of the selected feature vectors. The second, and more elaborated approach, consisted of reducing the dimensionality (three attributes only) of some component signatures before the feature vector concatenation. The final vectors obtained by these two approaches were tested by a neural network with leave-one-out to measure the correctness rate reached by the synergism of the signatures of different leaf regions. The experiments resulted in the identification of eight different species and the identification of the Gochnatia polymorpha species in Cerradão and Gallery Forest environments, Wet and Dry seasons, and under Sun and Shadow constraints
4

Identificação de espécies vegetais por meio de análise de imagens microscópicas de folhas / Identification of vegetal species by analysis of microscope images of leaves

Jarbas Joaci de Mesquita Sá Junior 18 April 2008 (has links)
A taxonomia vegetal atualmente exige um grande esforço dos botânicos, desde o processo de aquisição do espécime até a morosa comparação com as amostras já catalogadas em um herbário. Nesse contexto, o projeto TreeVis surge como uma ferramenta para a identificação de vegetais por meio da análise de atributos foliares. Este trabalho é uma ramificação do projeto TreeVis e tem o objetivo de identificar vegetais por meio da análise do corte transversal de uma folha ampliado por um microscópio. Para tanto, foram extraídas assinaturas da cutícula, epiderme superior, parênquima paliçádico e parênquima lacunoso. Cada assinatura foi avaliada isoladamente por uma rede neural pelo método leave-one-out para verificar a sua capacidade de discriminar as amostras. Uma vez selecionados os vetores de características mais importantes, os mesmos foram combinados de duas maneiras. A primeira abordagem foi a simples concatenação dos vetores selecionados; a segunda, mais elaborada, reduziu a dimensionalidade (três atributos apenas) de algumas das assinaturas componentes antes de fazer a concatenação. Os vetores finais obtidos pelas duas abordagens foram testados com rede neural via leave-one-out para medir a taxa de acertos alcançada pelo sinergismo das assinaturas das diferentes partes da folha. Os experimentos consitiram na identificação de oito espécies diferentes e na identificação da espécie Gochnatia polymorpha nos ambientes Cerrado e Mata Ciliar, nas estações Chuvosa e Seca, e sob condições de Sol e Sombra / Currently, taxonomy demands a great effort from the botanists, ranging from the process of acquisition of the sample to the comparison with the species already classified in the herbarium. For this reason, the TreeVis is a project created to identify vegetal species using leaf attributes. This work is a part of the TreeVis project and aims at identifying vegetal species by analysing cross-sections of leaves amplified by a microscope. Signatures were extract from cuticle, adaxial epiderm, palisade parenchyma and sponge parenchyma. Each signature was analysed by a neural network with the leave-one-out method to verify its ability to identify species. Once the most important feature vectors were selected, two different approachs were adopted. The first was a simple concatenation of the selected feature vectors. The second, and more elaborated approach, consisted of reducing the dimensionality (three attributes only) of some component signatures before the feature vector concatenation. The final vectors obtained by these two approaches were tested by a neural network with leave-one-out to measure the correctness rate reached by the synergism of the signatures of different leaf regions. The experiments resulted in the identification of eight different species and the identification of the Gochnatia polymorpha species in Cerradão and Gallery Forest environments, Wet and Dry seasons, and under Sun and Shadow constraints

Page generated in 0.078 seconds