Spelling suggestions: "subject:"distorção arquitetural"" "subject:"distorção arquitetura""
1 |
Novas abordagens para detecção automática de distorção arquitetural na mamografia digital e tomossíntese mamária / New approaches for automatic detection of architectural distortion in digital mammography and digital breast tomosynthesisOliveira, Helder Cesar Rodrigues de 26 August 2019 (has links)
O câncer de mama é a doença que mais acomete as mulheres em todo o mundo, sendo o tratamento mais eficaz se for diagnosticada em estágio inicial. A partir de 2011, nos programas de rastreamento de países desenvolvidos, vem sendo empregada uma nova modalidade de exame, a tomossíntese digital mamária (Digital Breast Tomosynthesis - DBT), que possui diversas vantagens se comparada à mamografia digital. No exame, o médico radiologista busca por sinais suspeitos na imagem, como: nódulos, microcalcificações e distorção arquitetural mamária (DAM). Sendo que, este último pode representar o estágio mais inicial de um câncer em formação, podendo se manifestar antes da formação de qualquer outra lesão. No entanto, a DAM é difícil de ser detectada pois modifica o tecido mamário de forma sutil, não havendo qualquer formação de massa ou a borda definida. Os sistemas computacionais de auxílio ao diagnóstico (Computer-Aided Detection - CAD) vêm apresentando alto desempenho na detecção de nódulos e microcalcificações mamárias, mas para o caso da DAM, o desempenho ainda é insatisfatório. Algumas limitações são normalmente reportadas nos algoritmos adotados para detectar automaticamente a DAM. O presente trabalho tem por objetivo propor novas abordagens para aumentar a precisão dos métodos computacionais de detecção: o uso de descritores de micro-padrões local para discriminação de áreas suspeitas; redução de falsos-positivos; uso do volume 3D fornecido pelo exame de DBT e; uso de arquitetura de aprendizagem profunda para discriminação e classificação de regiões suspeitas. Os diversos testes efetuados em cada proposta mostraram que é possível melhorar as taxas de detecção da DAM, mesmo para imagens de DBT onde ainda não há um esquema computacional de detecção bem estabelecido. / Breast cancer is the disease that most affects women worldwide and is the most effective treatment if it is diagnosed at early stages. Since 2011, in developed countries screening programs has been employed a new exam, the digital breast tomosynthesis (DBT), which has several advantages compared to the digital mammography. In the exam, the radiologist looks for suspicious signs in the image such as masses, microcalcifications and architectural distortion of breast (ADB). Since the later may represent the earliest sign of a cancer in formation, it may manifests before the formation of any other lesion. However, ADB is difficult to be detected due to its subtly changes the breast tissue, with no mass or defined shape. Computer-aided detection (CAD) systems have shown good results in the detection of masses and microcalcifications, however, for ADB the performance is still poor. Several weakness are reported in the pipeline adopted to automatic detection of ADB. The present work aims to propose new approaches to increase the accuracy of the current CAD pipeline: the use of local micro-pattern descriptors to discriminate suspicious areas; false-positives reduction; automatic detection of ADB in DBT images using and tridimensionality of the exam and; use of deep learning architecture to discriminate and classify suspicious regions. The several tests performed on each proposal showed that it is possible to improve the detection rates even for DBT images where there is no established CAD pipeline.
|
2 |
Detecção de distorção arquitetural mamária em mamografia digital utilizando rede neural convolucional profunda / Detection of architectural distortion in digital mammography using deep convolutional neural networkCosta, Arthur Chaves 08 March 2019 (has links)
A proposta deste trabalho foi analisar diferentes metodologias de treinamento de uma rede neural convolucional profunda (CNN) para a detecção de distorção arquitetural mamária (DA) em imagens de mamografia digital. A DA é uma contração sutil do tecido mamário que pode representar o sinal mais precoce de um câncer de mama em formação. Os sistemas computacionais de auxílio ao diagnóstico (CAD) existentes ainda apresentam desempenho insatisfatório para a detecção da DA. Sistemas baseados em CNN têm atraído a atenção da comunidade científica, inclusive na área médica para a otimização dos sistemas CAD. No entanto, as CNNs necessitam de um grande volume de dados para serem treinadas adequadamente, o que é particularmente difícil na área médica. Dessa forma, foi realizada neste trabalho, uma comparação de diferentes abordagens de treinamento para uma arquitetura CNN avaliando-se o efeito de técnicas de geração de novas amostras (data augmentation) sobre o desempenho da rede. Para isso, foram utilizadas 240 mamografias digitais clínicas. Uma das redes (CNN-SW) foi treinada com recortes extraídos por varredura em janela sobre a área interna da mama (aprox. 21600 em média) e a outra rede (CNN-SW+) contou com o mesmo conjunto ampliado por data augmentation (aprox. 345000 em média). Para avaliar o método, foi utilizada validação cruzada por k-fold, gerando-se em rodízio, 10 modelos de cada rede. Os testes analisaram todas as ROIs extraídas da mama, sendo testados 14 mamogramas por fold, e obtendo-se uma diferença estatisticamente significativa entre os resultados (AUC de 0,81 para a CNN-SW e 0,83 para a CNN-SW+). Mapas de calor ilustraram as predições da rede, permitindo uma análise visual e quantitativa do comportamento de ambos os modelos. / The purpose of this work was to analyze different training methodologies of a deep convolutional neural network (CNN) to detect breast architectural distortion (AD) in digital mammography images. AD is a subtle contraction of the breast tissue that may represent the earliest sign of a breast cancer in formation. Current Computer-Aided Detection (CAD) systems still have an unsatisfactory performance on AD detection. CNN-based systems have attracted the attention of the scientific community, including in the medical field for CAD optimization. However, CNNs require a large amount of data to be properly trained, which is particularly difficult in the medical field. Thus, in this work, different training approaches for a CNN architecture are compared evaluating the effect of data augmentation techniques on the data set. For this, 240 clinical digital mammography were used. One of the networks (CNN-SW) was trained with regions of interest (ROI) extracted by a sliding window over the inner breast area (approx 21600 on average) and the other network (CNN-SW+) had the same set enlarged by data augmentation (about 345000 on average). To evaluate the method, k-fold cross-validation was used, generating 10 instances of each model. The tests looked at all the ROIs extracted from the breast (14 mammograms per fold), and results showed a statistically significant difference between both networks (AUC of 0.81 for CNN-SW and 0.83 for CNN-SW+). Heat maps illustrated the predictions of the networks, allowing a visual and quantitative analysis of the behavior of both models.
|
Page generated in 0.0697 seconds