• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelos para dados de sobrevivência na presença de diferentes esquemas de ativação baseados na distribuição geométrica

Roman, Mari 08 April 2013 (has links)
Made available in DSpace on 2016-06-02T20:04:52Z (GMT). No. of bitstreams: 1 5104.pdf: 2493280 bytes, checksum: 296329e73498a367b56e93dcbe6f0aaa (MD5) Previous issue date: 2013-04-08 / Financiadora de Estudos e Projetos / In this thesis new families of survival distributions are proposed. Those distributions are derived by assuming a latent activation structure to explain the occurrence of the event of interest. In general, the competitive causes may have different activation mechanisms. Here we assume three different ones, namely, fisrt, random and last actvation mechanisms. The presence of cure fraction are also addressed in two contexts. The models assumed that the number of causes follows a Geometric distribution and the lifetime for these causes follows an Exponential distribution, and a Gamma Generalized distribution. The properties of the proposed distributions are discussed, including a formal proof of its probability density function and explicit algebraic formulas for its reliability and failure rate functions, moments, order statistics and modal value. Inferetial procedure is based on frequentist and Bayesian perspectives. Moreover, Bayesian case influence diagnostics based in -divergence, with include Kulback Leibler divergence measure as a particular case, are developed. Simulation studies are performed and experimental results are illustrated based in real datasets. / Nesta tese, novas famílias de distribuições são propostas para modelar dados de tempo de vida. Essas distribuições são obtidas assumindo que a ocorrência do evento de interesse é explicada por uma estrutura latente de ativação. Em geral, as causas competitivas podem ter diferentes mecanismos de ativação, consideramos os casos: primeiro, último e aleatório. A presença de fração de curados é considerada nestes contextos. Os modelos assumem que o número de causas de risco tem distribuição de probabilidade Geométrica; e o tempo de ativação desses fatores segue distribuição Exponencial ou Gama Generalizada. Propriedades das distribuições propostas são discutidas, incluindo obtenção da função densidade de probabilidade e fórmulas explícitas da função de risco, momentos, estatística de ordem e valor modal. Outro objetivo deste trabalho é o desenvolvimento de processos inferenciais nas perspectivas clássica e bayesiana. Além disso, as medidas bayesianas de diagnóstico baseadas na divergência, que incluem a divergência de Kulback Leibler como caso particular, são consideradas para detectar observações influentes. Estudos de simulação são realizados e resultados experimentais são obtidos para conjuntos de dados reais.
2

Modelos de sobrevivência com base nas distribuições geométrica e exponencial

Yamachi, Cíntia Yurie 01 February 2013 (has links)
Made available in DSpace on 2016-06-02T20:06:07Z (GMT). No. of bitstreams: 1 4907.pdf: 977659 bytes, checksum: 00900e73e61e1ca614a2419c9ad45d8e (MD5) Previous issue date: 2013-02-01 / Financiadora de Estudos e Projetos / In this dissertation we propose four models to model lifetime data. The fist family of distribution is called Exponentiated Complementary Exponential Geometric distribution (ECEG) and it is obtained by exponentiation of the cumulative distribution of the Complementary Exponential Geometric distribution (CEG) proposed by Louzada et al. (2011) to a new parameter α > 0. The second distribution is used to model lifetime when the population is not homogeneous about the risk of death and it has two subpopulation: one composed by individuals not susceptible by the event and other composed by individuals subjected to the risk. This model, called LECEG, has a long term parameter p related to the proportion of individuals out of risk. The third is the Exponentiated Exponential Geometric (EEG) that uses the same idea of the ECEG, and the fourth is the Exponentiated Complementary Exponential Geometric distribution under N systems (ECEGN) presented in a context of N independent working systems and the fails occurs when some of them fail. / Nesta dissertaç ão são propostos quatro modelos de distribuições de probabilidade para os tempos de vida de indivíduos em uma população. A primeira família de distribuições, a distribuiç ão Geométrica Exponencial Complementar Exponenciada (ECEG) e é obtida via exponenciação da distribuição acumulada da distribuição Geométrica Exponencial Complementar (CEG) proposta por Louzada et al. (2011) a um novo parâmetro α_ > 0. A segunda, é direcionada á modelagem de tempos de vida quando a população não é homogênea quanto ao risco de morte possuindo duas subpopulações: a de indivíduos não suscetíveis ao evento e a de indivíduos sob risco. Esta distribuição, distribuição Geométrica Exponencial Complementar Exponenciada na presença de longa duração (LECEG), possui o parâmetro p de longa duração que indica a proporção de indivíduos fora de risco. A terceira é a distribuição Exponencial Geométrica Exponenciada (EEG) que usa a mesma ideia de criação da ECEG, e a quarta a distribuição Exponencial Geométrica Complementar Exponenciada em N sistemas (ECEGN) que se apresenta num cenário com N sistemas funcionando independentemente e a falha ocorre quando algum sistema falhar.

Page generated in 0.1037 seconds