• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem para Dados Longitudinais de Contagem

TRINDADE, Daniele de Brito 02 1900 (has links)
Submitted by Etelvina Domingos (etelvina.domingos@ufpe.br) on 2015-03-12T19:28:53Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO Daniele de Brito Trindade.pdf: 1575283 bytes, checksum: 7c79e6ffbd150b8169bb357d1a252353 (MD5) / Made available in DSpace on 2015-03-12T19:28:53Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO Daniele de Brito Trindade.pdf: 1575283 bytes, checksum: 7c79e6ffbd150b8169bb357d1a252353 (MD5) Previous issue date: 2014-02 / CAPES / A modelagem para dados de contagem é bastante utilizada em diversas áreas do conhecimento, como nas ciências biológicas, educação e saúde pública. O modelo comumente utilizado para analisar dados de contagem é o modelo Poisson. Contudo, quando os dados apresentam superdispersão o modelo Poisson não é mais indicado. Existem extensões do modelo Poisson que podem ser usados nesta situação, como o modelo Poisson in acionado de zeros (ZIP, em inglês). Porém, neste trabalho, é considerado o modelo Binomial Negativo, que é adequado para esta situação, além de ser um modelo simples e bastante conhecido. Uma suposição do modelo de regressão tradicional é a independência entre as observações. Contudo, quando as unidades amostrais são medidas repetidamente ao longo do tempo, os estudos longitudinais permite a veri cação das taxas de mudança que ocorrem ao longo do tempo e os fatores que podem motivar tal variação. Estes estudos são de particular interesse quando o objetivo é avaliar variações globais ou individuais da resposta ao longo do tempo. Este tipo de estudo considera a correlação entre as respostas dentro das unidades amostrais e a ordenação cronológica das respostas. Duas abordagens de regressão comumente utilizadas para analisar dados longitudinais são os modelos condicionais e os marginais. O modelo condicional assume a existência de efeitos aleatórios que descrevem o comportamento de um indivíduo especí co, sendo este modelo também chamado de multinível. No modelo marginal a variável resposta é modelada independentemente da correlação existente entre as medidas de cada unidade amostral (denotada por correlação intra-indivíduo), modelando a expectativa marginal como uma função das variáveis explicativas. Neste trabalho as duas abordagens foram aplicadas à análise de dados de contagem longitudinais. Estudos de simulação foram realizados para avaliar a performance dos estimadores provenientes destas metodologias. Aplicações com bases de dados reais são apresentadas.

Page generated in 0.0767 seconds