Spelling suggestions: "subject:"distributed aprocessing"" "subject:"distributed eprocessing""
161 |
Um simulador distribuido para redes neurais artificiais / A distributed neural network simulatorSchwingel, Dinamerico January 1995 (has links)
Este trabalho analisa o uso de redes de estações de trabalho como uma única máquina a ser utilizada para permitir o processamento de problemas que não poderiam ser computados, aceitavelmente, em apenas um de seus nodos, seja por causa do tempo dispendido ou de recursos físicos necessários, como memória principal. São enfocados dois algoritmos de redes neurais artificiais - Combinatorial Neural Model e Back Propagation - que apresentam os problemas enunciados acima, e uma proposta de um esquema para distribuição dessa classe de algoritmos, levando em consideração as vantagens disponíveis no ambiente em questão, a apresentada. A implementação do modelo proposto, sob a forma de um simulador distribuído baseado no conceito de servidor está descrita no trabalho, assim como as estratégias de paralelização dos algoritmos. Ao final, são apresentados os resultados obtidos, quantitativa e qualitativamente, e uma avaliação mais detalhada da paralelização do algoritmo Back Propagation a exposta. / The use of workstation networks as distributed multicomputers to solve resource demanding problems that cannot be feasibly solved in one node is the main concern of this work. Two different artificial neural network algorithms, Combinatorial Neural Model and Back Propagation, are faced and a scheme for distributing this class of algorithms is presented. The several advantages of the environment are focused in the proposal along with its disadvantages. This work also presents the implementation of the proposed scheme allowing an in loco performance evaluation. At the end results are shown and a more in depth evaluation of the Back Propagation parallelization is presented.
|
162 |
Um modelo para linguagens orientadas a objetos distribuido / A model for distributed object—oriented languagesCavalheiro, Gerson Geraldo Homrich January 1994 (has links)
Linguagens de programação orientadas a objetos possuem diversas características que facilitam sua utilização frente a outras linguagens imperativas. No projeto e desenvolvimento de software, o mecanismo de herança permite a construção de sistemas na forma incremental e evolutiva, possibilitando a reutilização de códigos já escritos. Também a possível atingir aplicações com bons níveis de segurança e confiabilidade, através do encapsulamento de dados e funções sob forma de objetos, que também representam a unidade básica de execução em uma linguagem orientada a objetos. O mesmo recurso que possibilita níveis elevados de segurança permite que linguagens orientadas a objetos sejam inerentemente distribuídas. Objetos possuem tanto área de dados e código de execução independentes dos demais. Acessos aos dados internos de um objeto somente são possíveis através de mensagens explicitas entre objetos. Neste caso um objeto solicita uma ação específica a outro objeto, podendo ser enviados parâmetros e existir retorno de resultados. Este trabalho apresenta um modelo para construção de uma linguagem orientada a objetos distribuída. O ambiente para suportar a execução ao modelo é compostos por vários nodos de processamento com memórias locais individuais e contando com uma rede de comunicação para troca de mensagens entre os nodos. O modelo e discutido em dois níveis distintos: a nível de linguagem e a nível operacional. A nível de linguagem são analisados os recursos de programação normalmente utilizados em linguagens orientadas a objetos quando implementados em ambientes distribuídos. O ambiente de suporte A execução necessário ao suporte do modelo da linguagem a analisado pelo nível operacional. A apresentação do modelo a nível de linguagem discute as características de uma linguagem orientada a objetos distribuída frente as implementações seqüenciais convencionais. E ressaltada a implementado de herança em um ambiente de execução distribuído, que, não podendo ser através de compartilhamento, é efetuada através de copia de código. Também são apresentadas novas diretivas de compilação necessárias exclusivamente a ambientes distribuídos. Tais diretivas visam explorar níveis de concorrência de uma aplicação durante sua execução, diferenciando classes que definem objetos locais ou distribuídos e diferentes tipos de mensagens entre objetos. As formas de extrair o melhor desempenho nas aplicações e o gerenciamento do ambiente de execução são os pontos abordados pelo nível operacional do modelo. Em operação neste nível, um elemento de gerencia de execução permite o controle tanto dos objetos da aplicação quanto dos nodos de processamento disponíveis para execução. A tarefa de controle de objetos viabiliza a criação e remoção de objetos durante a execução da aplicação, bem como a identificação de localização destes. O controle dos nodos de processamento possibilita analisar continuamente a carga computacional dos nodos de processamento. Assim, cada objeto a ser criado pode ser alocado em um nodo onde a carga computacional esteja baixa, propiciando um melhor desempenho no momento de execução da aplicação distribuído a carga entre os nodos. A unido do modelo de execução distribuído proposto a uma linguagem orientada a objetos resulta em uma linguagem eficiente tanto na produção de software como no desempenho de aplicações. A eficiência na produção de sistemas 6 obtida através de dois itens, a utilização do paradigma de orientação a objetos e a transparência do nível operacional para o programador, que não necessita conhecer os mecanismos utilizados para ativação de objetos e envio de mensagens. A eficiência de execução é obtida através da utilização de múltiplos nodos processadores servindo como base a execução. Neste trabalho é também apresentado um protótipo para uma linguagem suportando o modelo distribuído proposto. A linguagem, denominada DPC++ (Processamento Distribuído em C++), é voltada para execução em redes de estações de trabalho, sobre o sistema operacional Unix, utilizando sockets como mecanismo de comunicação. O estilo de programação em DPC++ é baseado em C++. / The objects-oriented programming languages have many features who make simple their use in front of others imperatives languages. In the software project and development, the inheritance mechanism allows an increasing and evaluative way of codes that have been written. It also possible gain applications with goods levels of security and confiability with the encapsulation of both data and functions in the form of object, which represent the basic execution unit in an object-oriented language. The same resource that provides high levels of security also permits that object-oriented languages may be inherently distributed. Objects have their own area of data, their execution codes are independent from the other. Accesses to the internal data of an object are possible only through a specific protocol among objets. When this occurs, an object requests a specific action to other object with or without parameters or results return. This work presents a model for build a distributed object-oriented language, devoted to environments compounded by several processing nodes with local memory and linked by a communication network. The model is discussed in two different levels: language level and operational level. In the language level are analyzed the programming resources usually used in object-oriented languages when implemented in distributed environments. The executing environments support are analyzed in the operational level. In the language level presentation are made a discussion about distributed object-oriented language features in front of conventional sequential implementations. It is emphasized inheritance in a distributed executing environment, who is done by code copy, due to can not be by memory sharing. Also are presented news compilation directives necessaries to the distributed environment. Those directives aim to explorer concurrence levels in an application during its execution, differing class who defining local or distributed objects and the different messages types among objects. The operational level boards the ways that mean to extract the best performance for the applications and the execution environment management. An execution manager element allows the control as the application objects as the available to execution processor nodes. The task of object control makes possible the objects creation and removal during the application executing as well their network identification. The processor nodes control allows the continuous analyzes of the computational load in the nodes available to processing. In this way, every object to be created can be allocated in a node with low occupation rates, propitiating a better performance in the application executing. The union of the proposed distributed execution model to an objectoriented language results in an efficient language as in the software production as in execution performance. The systems production efficiency is obtained from two items: the utilization of the object-oriented paradigm an the transparency of the operational level to the programmer, that no need know the used mechanisms to object activation and message exchange. The execution efficiency is gained by the utilization of multiples processor nodes supporting the application executing. In this work is presented a prototype that implements the proposed model. The language, called DPC++, Distributed Processing in C++, is turned to execute in workstation network with Unix operational system, using sockets as communication mechanism. The style of DPC++ programming are based in C++.
|
163 |
Parallel replication for distributed video-on-demand systems.January 1997 (has links)
Lie, Wai-Kwok Peter. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 79-83). / Abstract --- p.i / Acknowledgments --- p.ii / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Background & Related Work --- p.5 / Chapter 2.1 --- Early Work on Multimedia Servers --- p.6 / Chapter 2.2 --- Compression of Multimedia Data --- p.6 / Chapter 2.3 --- Multimedia File Systems --- p.7 / Chapter 2.4 --- Scheduling Support for Multimedia Systems --- p.8 / Chapter 2.5 --- Inter-media Synchronization --- p.9 / Chapter 2.6 --- Related Work on Replication in VOD Systems --- p.9 / Chapter 3 --- System Model --- p.12 / Chapter 4 --- Replication Methodology --- p.15 / Chapter 4.1 --- Replication Triggering Policy --- p.16 / Chapter 4.2 --- Source & Target Nodes Selection Policies --- p.17 / Chapter 4.3 --- Replication Policies --- p.18 / Chapter 4.3.1 --- Policy 1: Injected Sequential Replication --- p.20 / Chapter 4.3.2 --- Policy 2: Piggybacked Sequential Replication --- p.22 / Chapter 4.3.3 --- Policy 3: Injected Parallel Replication --- p.25 / Chapter 4.3.4 --- Policy 4: Piggybacked Parallel Replication --- p.28 / Chapter 4.3.5 --- Policy 5: Injected & Piggybacked Parallel Replication --- p.34 / Chapter 4.3.6 --- Policy 6: Multi-Source Injected & Piggybacked Parallel Replication --- p.36 / Chapter 4.4 --- Dereplication Policy --- p.37 / Chapter 5 --- Distributed Architecture for VOD Server --- p.39 / Chapter 5.1 --- Server Node --- p.40 / Chapter 5.2 --- Movie Manager --- p.42 / Chapter 5.3 --- Metadata Manager --- p.42 / Chapter 5.4 --- Protocols for Distributed VOD Architecture --- p.43 / Chapter 5.4.1 --- Protocol for Servicing New Customers --- p.43 / Chapter 5.4.2 --- Protocol for Servicing Existing Customers --- p.45 / Chapter 5.4.3 --- Protocol for Single/Multi-Source Injected & Parallel Replication --- p.46 / Chapter 5.4.4 --- Protocol for Dereplication --- p.48 / Chapter 5.5 --- Failure Handling --- p.49 / Chapter 5.5.1 --- Handling of Server Node Failures --- p.50 / Chapter 5.5.2 --- Handling of Movie Manager Failures --- p.52 / Chapter 6 --- Results --- p.55 / Chapter 6.1 --- Performance Metric --- p.56 / Chapter 6.2 --- Simulation Environment --- p.58 / Chapter 6.3 --- Results of Experiments without Dereplication --- p.59 / Chapter 6.3.1 --- Comparison of Different Replication Policies --- p.60 / Chapter 6.3.2 --- Effect of Early Acceptance/Migration --- p.61 / Chapter 6.3.3 --- Answer to the Resources Consumption Tradeoff issue --- p.62 / Chapter 6.3.4 --- Effect of Varying Movie Popularity Skewness --- p.64 / Chapter 6.3.5 --- Effect of Varying Replication Threshold --- p.64 / Chapter 6.3.6 --- Comparison of Different Target Node Selection Policies --- p.65 / Chapter 6.4 --- Overall Impact of Dynamic Replication --- p.66 / Chapter 7 --- Comparison with BSR-based Policy --- p.71 / Chapter 8 --- Conclusions --- p.75 / Chapter 8.1 --- Summary --- p.75 / Chapter 8.2 --- Future Research Directions --- p.76 / Bibliography --- p.78
|
164 |
An adaptive communication mechanism for heterogeneous distributed environments using XML and servlets.January 2001 (has links)
Cheung Wing Hang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 107-112). / Abstracts in English and Chinese. / Abstract --- p.ii / Abstract in Chinese --- p.iv / Acknowledgments --- p.v / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Firewall Issue in Distributed Systems --- p.2 / Chapter 1.2 --- Heterogeneous Communication Protocols --- p.4 / Chapter 1.3 --- Translator for Converting Interface Definition to Flexible XML --- p.8 / Chapter 1.4 --- An Implementation of a Scalable Mediator Query System --- p.9 / Chapter 1.5 --- Our Contributions --- p.9 / Chapter 1.6 --- Outline of This Thesis --- p.10 / Chapter 2 --- Related Work and Technologies --- p.12 / Chapter 2.1 --- Overview of XML Technology --- p.12 / Chapter 2.1.1 --- XML Basic Syntax --- p.13 / Chapter 2.1.2 --- DTD: The Grammar Book --- p.15 / Chapter 2.1.3 --- Representing Complex Data Structures --- p.17 / Chapter 2.2 --- Overview of Java Servlet Technology --- p.18 / Chapter 2.3 --- Overview of Simple Object Access Protocol --- p.20 / Chapter 2.4 --- Overview of XML-RPC --- p.21 / Chapter 2.5 --- Overview of XIOP --- p.22 / Chapter 3 --- Using XML and Servlets to Support CORBA Calls --- p.24 / Chapter 3.1 --- Objective --- p.24 / Chapter 3.2 --- General Concept of Our Mechanism --- p.25 / Chapter 3.2.1 --- At Client Side --- p.27 / Chapter 3.2.2 --- At Server Side --- p.28 / Chapter 3.3 --- Data in Transmission --- p.30 / Chapter 3.3.1 --- Using XML --- p.30 / Chapter 3.3.2 --- Format of Messages in Transmission --- p.30 / Chapter 3.4 --- Supporting Callbacks in CORBA Systems --- p.33 / Chapter 3.4.1 --- What is callback? --- p.33 / Chapter 3.4.2 --- Enhancement to Allow Callbacks --- p.34 / Chapter 3.5 --- Achieving Transparency with Add-on Components --- p.37 / Chapter 4 --- A Translator to Convert CORBA IDL to XML --- p.39 / Chapter 4.1 --- Introduction to CORBA IDL --- p.39 / Chapter 4.2 --- Mapping from IDL to XML --- p.40 / Chapter 4.2.1 --- IDL Basic Data Types --- p.41 / Chapter 4.2.2 --- IDL Complex Data Types --- p.42 / Chapter 4.2.3 --- IDL Interface --- p.48 / Chapter 4.2.4 --- Attributes --- p.48 / Chapter 4.2.5 --- Operations (Methods) --- p.49 / Chapter 4.2.6 --- Exceptions --- p.50 / Chapter 4.2.7 --- Inheritance --- p.51 / Chapter 4.2.8 --- IDL Modules --- p.52 / Chapter 4.2.9 --- A Sample Conversion --- p.52 / Chapter 4.3 --- Making a Request or Response --- p.53 / Chapter 4.4 --- Code Generation for Add-on Components --- p.54 / Chapter 4.4.1 --- Generation of Shadow Objects --- p.54 / Chapter 4.4.2 --- Generation of Servlet Components --- p.55 / Chapter 5 --- Communication in Heterogeneous Distributed Environments --- p.58 / Chapter 5.1 --- Objective --- p.58 / Chapter 5.2 --- General Concept --- p.60 / Chapter 5.3 --- Case Study 1 - Distributed Common Object Model --- p.61 / Chapter 5.3.1 --- Brief Overview of Programming in DCOM --- p.61 / Chapter 5.3.2 --- Mapping the Two Different Interface Definitions --- p.63 / Chapter 5.3.3 --- Sample Architecture of Communicating Between DCOM and CORBA --- p.66 / Chapter 5.4 --- Case Study 2 - Java Remote Methods Invocation --- p.67 / Chapter 5.4.1 --- Brief Overview of Programming in Java RMI --- p.67 / Chapter 5.4.2 --- Mapping the Two Different Interface Definitions --- p.69 / Chapter 5.4.3 --- Sample Architecture of Communicating Between JavaRMI and CORBA --- p.71 / Chapter 5.5 --- Be Generic: Binding with the WEB --- p.72 / Chapter 6 --- Building a Scalable Mediator-based Query System --- p.74 / Chapter 6.1 --- Objectives --- p.74 / Chapter 6.2 --- Introduction to Our Mediator-based Query System --- p.76 / Chapter 6.2.1 --- What is mediator? --- p.76 / Chapter 6.2.2 --- The Architecture of our Mediator Query System --- p.77 / Chapter 6.2.3 --- The IDL Design of the Mediator System --- p.79 / Chapter 6.2.4 --- Components in the Query Mediator System --- p.80 / Chapter 6.3 --- Helping the Mediator System to Expand Across the Firewalls --- p.83 / Chapter 6.3.1 --- Implementation --- p.83 / Chapter 6.3.2 --- Across Heterogeneous Systems with DTD --- p.87 / Chapter 6.4 --- Adding the Callback Feature to the Mediator System --- p.89 / Chapter 6.5 --- Connecting our CORBA System with Other Environments --- p.90 / Chapter 6.5.1 --- Our Query System in DCOM --- p.91 / Chapter 6.5.2 --- Our Query System in Java RMI --- p.92 / Chapter 6.5.3 --- Binding Heterogeneous Systems --- p.93 / Chapter 7 --- Evaluation --- p.95 / Chapter 7.1 --- Performance Statistics --- p.95 / Chapter 7.1.1 --- Overhead in other methods --- p.97 / Chapter 7.2 --- Means for Enhancement --- p.98 / Chapter 7.2.1 --- Connection Performance of HTTP --- p.98 / Chapter 7.2.2 --- Transmission Data Compression --- p.99 / Chapter 7.2.3 --- Security Concern --- p.99 / Chapter 7.3 --- Advantages of Using Our Mechanism --- p.101 / Chapter 7.4 --- Disadvantages of Using Our Mechanism --- p.102 / Chapter 8 --- Conclusion --- p.104
|
165 |
A task allocation protocol for real-time financial data mining system.January 2003 (has links)
Lam Lui-fuk. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 75-76). / Abstracts in English and Chinese. / ABSTRACT --- p.I / 摘要 --- p.II / ACKNOWLEDGEMENT --- p.III / TABLE OF CONTENTS --- p.IV / LIST OF FIGURES --- p.VIII / LIST OF ABBREVIATIONS --- p.X / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2. --- Motivation and Research Objective --- p.3 / Chapter 1.3. --- Organization of the Dissertation --- p.3 / Chapter CHAPTER 2 --- BACKGROUND STUDIES --- p.5 / Chapter 2.1 --- The Contract Net Protocol --- p.5 / Chapter 2.2 --- Two-tier software architectures --- p.8 / Chapter 2.3 --- Three-tier software architecture --- p.9 / Chapter CHAPTER 3 --- SYSTEM ARCHITECTURE --- p.12 / Chapter 3.1 --- Introduction --- p.12 / Chapter 3.2 --- System Architecture Overview --- p.12 / Chapter 3.2.1 --- Client Layer --- p.13 / Chapter 3.2.2 --- Middle Layer --- p.13 / Chapter 3.2.3 --- Back-end Layer --- p.14 / Chapter 3.3 --- Advantages of the System Architecture --- p.14 / Chapter 3.3.1 --- "Separate the presentation components, business logic and data storage" --- p.14 / Chapter 3.3.2 --- Provide a central-computing platform for user using different computing platforms --- p.15 / Chapter 3.3.3 --- Improve system capacity --- p.15 / Chapter 3.3.4 --- Enable distributed computing --- p.16 / Chapter CHAPTER 4. --- SOFTWARE ARCHITECTURE --- p.17 / Chapter 4.1 --- Introduction --- p.17 / Chapter 4.2 --- Descriptions of Middle Layer Server Side Software Components --- p.17 / Chapter 4.2.1 --- Data Cache --- p.18 / Chapter 4.2.2 --- Functions Library --- p.18 / Chapter 4.2.3 --- Communicator --- p.18 / Chapter 4.2.4 --- Planner Module --- p.19 / Chapter 4.2.5 --- Scheduler module --- p.19 / Chapter 4.2.6 --- Execution Module --- p.20 / Chapter 4.3 --- Overview the Execution of Service Request inside Server --- p.20 / Chapter 4.4 --- Descriptions of Client layer Software Components --- p.21 / Chapter 4.4.1 --- Graphical User Interface --- p.22 / Chapter 4.5 --- Overview of Task Execution in Advanced Client ´ةs Application --- p.23 / Chapter 4.6 --- The possible usages of task allocation protocol --- p.24 / Chapter 4.6.1 --- Chart Drawing --- p.25 / Chapter 4.6.2 --- Compute user-defined technical analysis indicator --- p.25 / Chapter 4.6.3 --- Unbalance loading --- p.26 / Chapter 4.6.4 --- Large number of small data mining V.S. small number of large data mining --- p.26 / Chapter 4.7 --- Summary --- p.27 / Chapter CHAPTER 5. --- THE CONTRACT NET PROTOCOL FOR TASK ALLOCATION --- p.28 / Chapter 5.1 --- Introduction --- p.28 / Chapter 5.2 --- The FIPA Contract Net Interaction Protocol --- p.28 / Chapter 5.2.1 --- Introduction to the FIPA Contract Net Interaction Protocol --- p.28 / Chapter 5.2.2 --- Strengths of the FIPA Contract Net Interaction Protocol for our system --- p.30 / Chapter 5.2.3 --- Weakness of the FIPA Contractor Net Interaction Protocol for our system --- p.32 / Chapter 5.3 --- The Modified Contract Net Protocol --- p.33 / Chapter 5.4 --- The Implementation of the Modified Contract Net Protocol --- p.39 / Chapter 5.5 --- Summary --- p.46 / Chapter CHAPTER 6. --- A CLIENT AS SERVER MODEL USING MCNP FOR TASK ALLOCATION --- p.48 / Chapter 6.1 --- Introduction --- p.48 / Chapter 6.2 --- The CASS System Model --- p.48 / Chapter 6.3 --- The analytical model of the CASS system --- p.51 / Chapter 6.4 --- Performance Analysis of the CASS System --- p.55 / Chapter 6.5 --- Performance Simulation --- p.62 / Chapter 6.6 --- An Extension of the Load-Balancing Algorithm for Non-Uniform Client's Service Time Distribution --- p.68 / Chapter 6.7 --- Summary --- p.69 / Chapter CHAPTER 7. --- CONCLUSION AND FUTURE WORK --- p.71 / Chapter 7.1 --- Conclusion --- p.71 / Chapter 7.2 --- Future Work --- p.73 / BIBLIOGRAPHY --- p.75
|
166 |
A time division multiplexer/demultiplexer for an experimental multiple access lightwave systemNagode, Louis Andrew January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING / by Louis Andrew Nagode. / M.S.
|
167 |
Decentralized algorithms for optimization of single commodity flowsCastiñeyra Figueredo, Isidro Marcos January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Isidro Marcos Castiñeyra Figueredo. / M.S.
|
168 |
Naming and synchronization in a decentralized computer system.Reed, David Patrick, 1952- January 1979 (has links)
Thesis. 1979. Ph.D.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Bibliography: leaves 212-216. / Ph.D.
|
169 |
Aplicabilidade do padrão de processamento distribuído e aberto nos projetos de sistemas abertos de automação. / Applicability of open distributed processing in development of open automation system.Jorge Luis Risco Becerra 09 September 1998 (has links)
Esta tese visa demonstrar a aplicação do padrão ODP (Open Distributed System) no desenvolvimento de sistemas distribuídos e abertos aplicados em automação. Para atingir este objetivo define-se uma estratégia cujos elementos básicos são: a metodologia ODP e o experimento ODP. A metodologia suporta o padrão ODP, numa estrutura sistemática e o experimento, aplica-se num projeto, para observar o comportamento do processo de aplicabilidade. A metodologia ODP está composta dos conceitos, procedimentos e modelos, propostos pelo padrão ODP; das técnicas e conceitos da orientação a objetos e da estrutura de um modelo de sistema aberto de automação (SAA), constituindo uma estrutura coerente e gerenciável, de aplicação prática nos projetos de sistemas abertos em automação. No experimento ODP, a metodologia é aplicada no desenvolvimento de um sistema de automoção, cujo escopo são os projetos dos grandes empreendimentos, que utilizam em seu processo de desenvolvimento a engenharia simultânea. O resultado desta automação será caracterizada pela obtenção de um sistema distribuído, aberto e configurado como ambiente cooperativo (Groupware) de projeto. Finalmente, os resultados do experimento serão comparados com outros tipos de metodologias que não utilizam o ODP, para poder concluir sobre a utilização do padrão ODP nos projetos de sistemas de automação. / This thesis purposes to demonstrate the applicability of the open distributed processing standard, in the development of the open distributed system applied in the automation. To achieve this objective a strategy is defined, whose basic elements are the ODP methodology and the ODP experiment. The methodology supports the ODP standard in a systematic structure and the experiment applies it in one project, to observe the behavior of the applicability process. The ODP methodology is composed by concepts, procedures and models, proposed by the ODP standard; by techniques and concepts of the objects oriented, and the structure of an open automation system model (OAS), establishing an manageable and coherent structure. In the ODP experiment, this methodology is applied in the development of an automation system which scope is the large enterprise projects that use in his development process the concurrent engineering. The result of this automation will be characterized by the Open Distributed System and will be configured as a project cooperative environment (Groupware). Finally, the experiment results will be compared with other methodologies that don\'t use ODP, to obtain conclusions about the use of the ODP standard in the automation system projects.
|
170 |
Estimation of distribution algorithms with dependency learning. / CUHK electronic theses & dissertations collectionJanuary 2009 (has links)
Li, Gang. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 121-136). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
Page generated in 0.0776 seconds