• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle des diagnostics optiques en temps réel dans le contrôle d'une colonne d'extraction liquide-liquide type pulsée - comparaison expérience / modèle

Syll, Ousmane 11 December 2008 (has links) (PDF)
La conception d'une colonne d'extraction liquide-liquide repose sur le mécanisme de transfert d'énergie conduisant à une fragmentation de la phase légère en gouttelettes permettant le transfert de matière avec la phase lourde. Toutefois ce mécanisme présente de façon récurrente à chaque plateau une coalescence des gouttes suivie d'une fragmentation. Le processus étudié dans ce mémoire repose sur l'emploi d'une colonne pulsée instrumentée par des techniques optiques (analyse d'images et Anémométrie Doppler Laser) afin de disposer d'outils non intrusifs pour qualifier les processus de transfert et l'hydrodynamique de la colonne. Le modèle expérimental choisi consiste à étudier le transfert de matière de l'acide acétique de la phase dispersée (acétate d'éthyle - acide acétique) à la phase continue (eau). Le système d'analyse d'image a permis de mesurer in situ la distribution des gouttes de la phase légère selon leur taille (DSD) en fonction des paramètres physicochimiques et thermodynamiques. La tension de surface de chaque liquide vis-à-vis des plateaux perforés (PTFE) a été déterminée à partir des mesures d'angle de contact. Les transferts d'énergie et de matière caractérisés par le rapport surface/volume des gouttes sont corrélés avec les paramètres d'action afin d'interpréter le phénomène restrictif tels que le Hold-up et l'efficacité de séparation. Cependant, l'étude du travail d'adhésion entre la goutte et la surface des plateaux indique que les variations des propriétés interfaciales sont fonction de la concentration du soluté et doit être prises en compte dans la corrélation du diamètre moyen de Sauter. Nous avons utilisé des codes industriels Hysys/Aspen afin d'établir le rôle déterminant de la tension de surface sur les codes de calcul et la convergence des modèles. A partir de ces modèles nous avons déterminer l'efficacité de chaque plateau et de mettre en évidence le rôle du transfert d'énergie responsable du phénomène d'engorgement. Nous avons estimé la vitesse moyenne et le temps de séjour moyen sur chaque plateau par ADL en fonction de l'énergie transmise au plateau par pulsation mécanique et à partir de ces résultats nous avons simulé sous Comsol 3.4 l'écoulement hydrodynamique de la colonne type pulsée.
2

LES of atomization and cavitation for fuel injectors / Simulation aux grandes échelles de l'atomisation et de la cavitation dans le cadre des injections de carburant

Ahmed, Aqeel 06 September 2019 (has links)
Cette thèse présente la Simulation des Grandes Echelles (LES) de l’injection, de la pulvérisation et de la cavitation dans un injecteur pour les applications liées aux moteurs à combustion interne. Pour la modélisation de l’atomisation, on utilise le modèle ELSA (Eulerian Lagrangian Spray Atomization). Le modèle résout la fraction volumique du combustible liquide ainsi que la densité de surface d’interface liquide-gaz pour décrire le processus complet d’atomisation. Dans cette thèse, l’écoulement à l’intérieur de l’injecteur est également pris en compte pour une étude ultérieure de l’atomisation. L’étude présente l’application du modèle ELSA à un injecteur Diesel typique, à la fois dans le contexte de RANS et de LES.Le modèle est validé à l’aide de données expérimentales disponibles dans Engine Combustion Network (ECN). Le modèle ELSA, qui est normalement conçu pour les interfaces diffuses (non résolues), lorsque l’emplacement exact de l’interface liquide-gaz n’est pas pris en compte, est étendu pour fonctionner avec une formulation de type Volume of Fluid (VOF) de flux à deux phases, où l’interface est explicitement résolu. Le couplage est réalisé à l’aide de critères IRQ (Interface Resolution Quality), qui prennent en compte à la fois la courbure de l’interface et la quantité modélisée de la surface de l’interface. Le modèle ELSA est développé en premier lieu en considérant les deux phases comme incompressibles. L’extension à la phase compressible est également brièvement étudiée dans cette thèse. Il en résulte une formulation ELSA compressible qui prend en compte la densité variable de chaque phase. En collaboration avec l’Imperial College de Londres, la formulation de la fonction de densité de probabilité (PDF) avec les champs stochastiques est également explorée afin d’étudier l’atomisation. Dans les systèmes d’injection de carburant modernes, la pression locale à l’intérieur de l’injecteur tombe souvent en dessous de la pression de saturation en vapeur du carburant, ce qui entraîne une cavitation. La cavitation affecte le flux externe et la formulation du spray. Ainsi, une procédure est nécessaire pour étudier le changement de phase ainsi que la formulation du jet en utilisant une configuration numérique unique et cohérente. Une méthode qui couple le changement de phase à l’intérieur de l’injecteur à la pulvérisation externe du jet est développée dans cette thèse. Ceci est réalisé en utilisant le volume de formulation de fluide où l’interface est considérée entre le liquide et le gaz; le gaz est composé à la fois de vapeur et d’airambiant non condensable. / This thesis presents Large Eddy Simulation (LES) of fuel injection, atomization and cavitation inside the fuel injector for applications related to internal combustion engines. For atomization modeling, Eulerian Lagrangian Spray Atomization (ELSA) model is used. The model solves for volume fraction of liquid fuel as well as liquid-gas interface surface density to describe the complete atomization process. In this thesis, flow inside the injector is also considered for subsequent study of atomization. The study presents the application of ELSA model to a typical diesel injector, both in the context of RANS and LES. The model is validated with the help of experimental data available from Engine Combustion Network (ECN). The ELSA model which is normally designed for diffused (unresolved) interfaces, where the exact location of the liquid-gas interface is not considered, is extended to work with Volume of Fluid (VOF) type formulation of two phase flow, where interface is explicitly resolved. The coupling is achieved with the help of Interface Resolution Quality (IRQ) criteria, that takes into account both the interface curvature and modeled amount of interface surface. ELSA model is developed first considering both phases as incompressible, the extension to compressible phase is also briefly studied in this thesis, resulting in compressible ELSA formulation that takes into account varying density in each phase. In collaboration with Imperial College London, the Probability Density Function (PDF) formulation with Stochastic Fields is also explored to study atomization. In modern fuel injection systems, quite oftenthe local pressure inside the injector falls below the vapor saturation pressure of the fuel, resulting in cavitation. Cavitation effects the external flow and spray formulation. Thus, a procedure is required to study the phase change as well as jet formulation using a single and consistent numerical setup. A method is developed in this thesis that couples the phase change inside the injector to the external jet atomization. This is achieved using the volume of fluid formulation where the interface is considered between liquid and gas; gas consists of both the vapor and non condensible ambient air.

Page generated in 0.1847 seconds