Spelling suggestions: "subject:"disulfide bond informationation"" "subject:"disulfide fond informationation""
1 |
Effects of disulfide bond formation in production of the recombinant extracellular domain of human CD83 as a therapeutic proteinZhang, Lin January 2010 (has links)
The formation of aberrant disulfide bonds is a structural consideration for the manufacturing of the extracellular domain of human CD83 (hCD83ext), a potential therapeutic protein. In certain instances, hCD83ext protein products, even when stored frozen, tend to dimerize or even multimerize through the formation of aberrant intermolecular disulfide bonds. Herein, we discovered an analytical inconsistency and applied a modified sample preparation protocol for proper structural analysis of hCD83ext products which are heterologously expressed in Escherichia coli and subsequently purified. In addition, a mutant derivative with the Cys100Ser mutation was identified as an improved version which did not form dimers or multimers. The identification of this mutant variant as a more potent therapeutic protein than other hCD83ext species demonstrated that the structural variation associated with disulfide bond formation can be a critical issue for rigorous control of the quality and bioactivity of therapeutic proteins. The application of this mutant variant for protein therapeutic is currently under exploration.
As a comparative study, the hCD83ext was expressed as a glutathione-S-transferase (GST) fusion in two E. coli B strains, i.e. BL21 and Origami B having a reductive and oxidative cytoplasm. The final therapeutic products of hCD83ext produced by the two expression hosts exhibited significant differences in protein conformation and molecular properties, which presumably resulted from different disulfide patterns. The study highlights the importance of developing proper host/vector systems and biomanufacturing conditions for the production of recombinant therapeutic proteins with a consistent product quality.
Cys27 in the hCD83ext was identified as a target for molecular manipulation. Two E. coli strains of BL21(DE3) and Origami B(DE3) were used as the expression host to produce the Cys27 mutants. It was observed that Cys27 was involved in the in vivo formation of intramolecular disulfide bonds when hCD83ext was expressed in Origami B(DE3). The Origami-derived protein products had a higher tendency than the BL21-derived counterparts for multimerization via the in vitro formation of intermolecular disulfide bonds. Various analyses were conducted to identify the structural differences among these mutant variants. Most importantly, molecular stability was enhanced by the Cys27 mutations since the Cys27 mutants derived from either BL21 or Origami were much less susceptible to degradation compared to wild-type hCD83ext. This study highlights the implications of aberrant disulfide bond formation on the production of therapeutic proteins.
To address an inconsistent bioactivity issue that is primarily due to the aberrant formation of disulfide bonds associated with the presence of five cysteine residues, i.e. AA 27, 35, 100, 107, and 129, the molecular role that each cysteine plays upon the formation of intramolecular or intermolecular disulfide bonds was characterized, using various hCD83ext mutant variants derived by two E. coli expression hosts, i.e. BL21(DE3) and Origami B(DE3). Among the five cysteines, Cys100 and Cys129 can act as a bridging cysteine for in vitro multimerization via the formation of intermolecular disulfide bonds. The multimerization can be alleviated to some extent with less free Cys129 residues, associated with the possible formation of Cys27-Cys129 intramolecular disulfide bond. As a result, introducing the Cys27 mutation can increase the multimerization presumably via freeing more Cys129 residues. In addition, protein stability can be improved in the presence of the Cys27 mutation. The formation of the Cys27-Cys129 intramolecular disulfide bond appears to be more effective in the presence of the Cys100 mutation, resulting in the suppression of multimerization. The two conserved cysteine residues, i.e. Cys35 and Cys107, can be potentially linked to form an intramolecular disulfide bond, particularly when the protein is produced in Origami B(DE3).
|
2 |
Effects of disulfide bond formation in production of the recombinant extracellular domain of human CD83 as a therapeutic proteinZhang, Lin January 2010 (has links)
The formation of aberrant disulfide bonds is a structural consideration for the manufacturing of the extracellular domain of human CD83 (hCD83ext), a potential therapeutic protein. In certain instances, hCD83ext protein products, even when stored frozen, tend to dimerize or even multimerize through the formation of aberrant intermolecular disulfide bonds. Herein, we discovered an analytical inconsistency and applied a modified sample preparation protocol for proper structural analysis of hCD83ext products which are heterologously expressed in Escherichia coli and subsequently purified. In addition, a mutant derivative with the Cys100Ser mutation was identified as an improved version which did not form dimers or multimers. The identification of this mutant variant as a more potent therapeutic protein than other hCD83ext species demonstrated that the structural variation associated with disulfide bond formation can be a critical issue for rigorous control of the quality and bioactivity of therapeutic proteins. The application of this mutant variant for protein therapeutic is currently under exploration.
As a comparative study, the hCD83ext was expressed as a glutathione-S-transferase (GST) fusion in two E. coli B strains, i.e. BL21 and Origami B having a reductive and oxidative cytoplasm. The final therapeutic products of hCD83ext produced by the two expression hosts exhibited significant differences in protein conformation and molecular properties, which presumably resulted from different disulfide patterns. The study highlights the importance of developing proper host/vector systems and biomanufacturing conditions for the production of recombinant therapeutic proteins with a consistent product quality.
Cys27 in the hCD83ext was identified as a target for molecular manipulation. Two E. coli strains of BL21(DE3) and Origami B(DE3) were used as the expression host to produce the Cys27 mutants. It was observed that Cys27 was involved in the in vivo formation of intramolecular disulfide bonds when hCD83ext was expressed in Origami B(DE3). The Origami-derived protein products had a higher tendency than the BL21-derived counterparts for multimerization via the in vitro formation of intermolecular disulfide bonds. Various analyses were conducted to identify the structural differences among these mutant variants. Most importantly, molecular stability was enhanced by the Cys27 mutations since the Cys27 mutants derived from either BL21 or Origami were much less susceptible to degradation compared to wild-type hCD83ext. This study highlights the implications of aberrant disulfide bond formation on the production of therapeutic proteins.
To address an inconsistent bioactivity issue that is primarily due to the aberrant formation of disulfide bonds associated with the presence of five cysteine residues, i.e. AA 27, 35, 100, 107, and 129, the molecular role that each cysteine plays upon the formation of intramolecular or intermolecular disulfide bonds was characterized, using various hCD83ext mutant variants derived by two E. coli expression hosts, i.e. BL21(DE3) and Origami B(DE3). Among the five cysteines, Cys100 and Cys129 can act as a bridging cysteine for in vitro multimerization via the formation of intermolecular disulfide bonds. The multimerization can be alleviated to some extent with less free Cys129 residues, associated with the possible formation of Cys27-Cys129 intramolecular disulfide bond. As a result, introducing the Cys27 mutation can increase the multimerization presumably via freeing more Cys129 residues. In addition, protein stability can be improved in the presence of the Cys27 mutation. The formation of the Cys27-Cys129 intramolecular disulfide bond appears to be more effective in the presence of the Cys100 mutation, resulting in the suppression of multimerization. The two conserved cysteine residues, i.e. Cys35 and Cys107, can be potentially linked to form an intramolecular disulfide bond, particularly when the protein is produced in Origami B(DE3).
|
3 |
Size Matters: The Influence of Isoform Size on the Intracellular Processing of Apolipoprotein(a)Han, KRISTINA 23 September 2009 (has links)
High plasma concentrations of Lipoprotein(a) (Lp(a)) have been identified as a risk factor for a variety of atherogenic disorders such as cerebrovascular disease, peripheral vascular disease, and coronary heart disease. Lp(a) consists of a lipoprotein moiety containing apolipoproteinB-100 (apoB-100), as well as apolipoprotein(a) (apo(a)), a unique glycoprotein to which the majority of Lp(a) functions are attributed. Variation in the number of identically repeated kringle IV type 2 (KIV2) motifs of apo(a) forms the molecular basis of Lp(a) isoform size heterogeneity, which is a hallmark of this lipoprotein. There is a general inverse correlation between apo(a) size and plasma Lp(a) concentrations, attributed in part to less efficient secretion of larger apo(a) isoforms from hepatic cells. The present study provides a preliminary investigation into processes involved in apo(a) secretion, with respect to isoform size, to understand this inverse correlation at a molecular level. Pulse-chase experiments were performed in human embryonic kidney (HEK 293) cells and human hepatoma (HepG2) cells, both stably expressing differently-sized recombinant apo(a) isoforms representing the range of apo(a) sizes observed in the population. The folding kinetics for the different apo(a) isoforms were determined by changes in the mobility of the non-reduced radiolabelled species on SDS-PAGE gels. In HEK 293 cells, the rate at which apo(a) is folded correlated well with isoform size. In HepG2 cells, however, folding times were comparable regardless of isoform size. Apo(a) secretion from both cell lines exhibited size-dependency. Preliminary experimentation on endoplasmic reticulum (ER)-resident protein modifications of apo(a) was performed, resulting in the identification of apo(a) interactions with PDI, Erp57, Calnexin, Grp78, Grp94, and EDEM. Preliminary experiments indicate a role for intracellular apo(a) degradation in the amount of apo(a) that is secreted from HepG2 cells, although an isoform size dependency of this degradation process cannot be established with current experimental data. Further experimentation is required to confirm enzyme interactions with differently-sized apo(a) isoforms, to identify other chaperones involved in apo(a) secretion, and to confirm the role of proteasomes in intracellular apo(a) degradation. This may, in turn, provide information regarding the mechanism of how apo(a) secretion from hepatic cells is regulated. / Thesis (Master, Biochemistry) -- Queen's University, 2009-09-20 19:10:09.497
|
4 |
Disulfide bond formation between dimeric immunoglobulin A and the polymeric immunoglobulin receptor in cultured epithelial cells and rat liverChintalacharuvu, Koteswara Rao January 1991 (has links)
No description available.
|
5 |
Mechanisms and applications of disulfide bond formationNguyen, V. D. (Van Dat) 27 January 2015 (has links)
Abstract
About one-third of mammalian proteins are secreted proteins and membrane proteins. Most of these proteins contain disulfide bonds in their native state, covalent links formed between the thiol groups of cysteine residues. In many proteins, disulfide bonds play an essential role in folding, stabilizing structure and the function of the protein. Therefore, understanding the pathways of disulfide bond formation is crucial for a wide range of medical processes and therapies. Disulfide bond formation is catalyzed by the Protein Disulfide Isomerase (PDI) family. To date the mechanisms of the PDIs in disulfide bond formation and pathways for disulfide bond formation have not been fully characterized.
Here the structure of the substrate binding <b>b’x</b> domain of human PDI was determined. The structure shows that the<b> b'</b> domain has a typical thioredoxin fold and that the <b>x</b> region can interact with the substrate binding site of the <b>b'</b> domain. Specifically, the <b>x</b> region of PDI can adopt alternative conformations during the functional cycle of PDI action and that these are linked to the ability of PDI to interact with folding substrates.
In addition, this study showed that two human proteins, GPx7 and GPx8 are involved in disulfide bond formation. The addition of GPx7 or GPx8 to a folding protein along with PDI and peroxide allows the efficient oxidative refolding of a reduced denatured substrate protein.
Finally, this thesis includes the development of a system for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli. It showed that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond, allows the formation of native disulfide bonds in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction. Introduction of Erv1p and a disulfide isomerase, e.g. PDI, allows the efficient formation of natively folded eukaryotic proteins with multiple disulfide bonds in the cytoplasm of E. coli. This system is able to express high levels of complex disulfide bonded eukaryotic proteins. / Tiivistelmä
Noin kolmasosa kaikista nisäkkäiden proteiineista on solun ulkopuolelle eritettäviä proteiineja ja kalvoproteiineja. Monet näistä proteiineista sisältävät natiivissa konformaatiossaan disulfidisidoksia, jotka ovat kovalenttisia sidoksia kysteiinitähteiden tioliryhmien välillä. Useissa proteiineissa näillä disulfidisidoksilla on keskeinen rooli proteiinin laskostumisessa, kolmiulotteisen rakenteen stabiloinnissa sekä proteiinin toiminnassa. Disulfidisidosten muodostumisen taustalla olevien mekanismien tunteminen onkin tärkeää monien lääketieteellisten prosessien ja hoitomenetelmien kannalta. Disulfidisidosten muodostumista katalysoivat proteiinidisulfidi-isomeraasi (PDI) -perheeseen kuuluvat entsyymit. PDI entsyymien toimintamekanismeja ja disulfidisidosten muodostumisen reaktioreittejä ei kuitenkaan vielä tunneta tarkasti.
Tässä väitöskirjassa selvitettiin ihmisen PDI entsyymin substraattia sitovan <b>b’x</b> alayksikön rakenne. Rakenteesta voidaan todeta <b>b’</b> alayksikön laskostuminen tyypilliseen tioredoksiini muotoon sekä <b>x</b> alueen interaktio <b>b’</b> alayksikön substraattia sitovan kohdan kanssa. PDI entsyymin katalysoiman reaktioketjun aikana <b>x</b> alayksikkö voi muuttaa konformaatiotaan mahdollistaen PDI entsyymin interaktion laskostuvien substraattiproteiinien kanssa.
Tässä tutkimuksessa osoitettiin myös kahden ihmisen proteiinin, GPx7 ja GPx8 osallistuminen disulfidisidosten muodostumista katalysoiviin reaktioihin. GPx7 ja GPx8 entsyymien lisäys laskostumisreaktioon yhdessä PDI:n ja vetyperoksidin kanssa mahdollistaa pelkistetyn, denaturoidun substraattiproteiinin tehokkaan, hapettaviin reaktioihin perustuvan uudelleenlaskostumisen natiiviin muotoonsa.
Osana tätä väitöstutkimusta kehitettiin menetelmä, joka mahdollistaa disulfideja sisältävien proteiinien tehokkaan tuoton E.colin solulimassa. Menetelmässä sulfhydryylioksidaasina ja FAD:sta riippuvana disulfidisidosten muodostumisen katalysaattorina toimiva Erv1p mahdollistaa disulfidisidosten muodostumisen E.colin solulimassa myös ilman solun pelkistävien reaktioreittien geneettistä poistamista. Erv1p yhdessä disulfidi-isomeraasin, kuten PDI, kanssa mahdollistaa oikein laskostuneiden, useita disulfidisidoksia sisältävien eukaryoottisten proteiinien tehokkaan tuotannon E.colin solulimassa. Menetelmällä pystytään tuottamaan suuria määriä monimutkaisia disulfidisidoksellisia proteiineja.
|
Page generated in 0.1343 seconds