• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 73
  • 16
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Pollution-induced community tolerance in freshwater biofilms – from molecular mechanisms to loss of community functions

Lips, Stefan 06 February 2023 (has links)
Exposure to herbicides poses a threat to aquatic biofilms by affecting their community structure, physiology and function. These changes render biofilms to become more tolerant, but on the downside community tolerance has ecologic costs. A concept that addresses induced community tolerance to a pollutant (PICT) was introduced by Blanck and Wängberg (1988). The basic principle of the concept is that microbial communities undergo pollution-induced succession when exposed to a pollutant over a long period of time, which changes communities structurally and functionally and enhancing tolerance to the pollutant exposure. However, the mechanisms of tolerance and the ecologic consequences were hardly studied up to date. This thesis addresses the structural and functional changes in biofilm communities and applies modern molecular methods to unravel molecular tolerance mechanisms. Two different freshwater biofilm communities were cultivated for a period of five weeks, with one of the communities being contaminated with 4 μg L-1 diuron. Subsequently, the communities were characterized for structural and functional differences, especially focusing on their crucial role of photosynthesis. The community structure of the autotrophs was assessed using HPLC-based pigment analysis and their functional alterations were investigated using Imaging-PAM fluorometry to study photosynthesis and community oxygen profiling to determine net primary production. Then, the molecular fingerprints of the communities were measured with meta-transcriptomics (RNA-Seq) and GC-based community metabolomics approaches and analyzed with respect to changes in their molecular functions. The communities were acute exposed to diuron for one hour in a dose-response design, to reveal a potential PICT and uncover related adaptation to diuron exposure. The combination of apical and molecular methods in a dose-response design enabled the linkage of functional effects of diuron exposure and underlying molecular mechanisms based on a sensitivity analysis. Chronic exposure to diuron impaired freshwater biofilms in their biomass accrual. The contaminated communities particularly lost autotrophic biomass, reflected by the decrease in specific chlorophyll a content. This loss was associated with a change in the molecular fingerprint of the communities, which substantiates structural and physiological changes. The decline in autotrophic biomass could be due to a primary loss of sensitive autotrophic organisms caused by the selection of better adapted species in the course of chronic exposure. Related to this hypothesis, an increase in diuron tolerance has been detected in the contaminated communities and molecular mechanisms facilitating tolerance have been found. It was shown that genes of the photosystem, reductive-pentose phosphate cycle and arginine metabolism were differentially expressed among the communities and that an increased amount of potential antioxidant degradation products was found in the contaminated communities. This led to the hypothesis that contaminated communities may have adapted to oxidative stress, making them less sensitive to diuron exposure. Moreover, the photosynthetic light harvesting complex was altered and the photoprotective xanthophyll cycle was increased in the contaminated communities. Despite these adaptation strategies, the loss of autotrophic biomass has been shown to impair primary production. This impairment persisted even under repeated short-term exposure, so that the tolerance mechanisms cannot safeguard primary production as a key function in aquatic systems.:1. The effect of chemicals on organisms and their functions .............................. 1 1.1 Welcome to the anthropocene .......................................................................... 1 1.2 From cellular stress responses to ecosystem resilience ................................... 3 1.2.1 The individual pursuit for homeostasis ....................................................... 3 1.2.2 Stability from diversity ................................................................................. 5 1.3 Community ecotoxicology - a step forward in monitoring the effects of chemical pollution? ................................................................................................................. 6 1.4 Functional ecotoxicological assessment of microbial communities ................... 9 1.5 Molecular tools – the key to a mechanistic understanding of stressor effects from a functional perspective in microbial communities? ...................................... 12 2. Aims and Hypothesis ......................................................................................... 14 2.1 Research question .......................................................................................... 14 2.2 Hypothesis and outline .................................................................................... 15 2.3 Experimental approach & concept .................................................................. 16 2.3.1 Aquatic freshwater biofilms as model community ..................................... 16 2.3.2 Diuron as model herbicide ........................................................................ 17 2.3.3 Experimental design ................................................................................. 18 3. Structural and physiological changes in microbial communities after chronic exposure - PICT and altered functional capacity ................................................. 21 3.1 Introduction ..................................................................................................... 21 3.2 Methods .......................................................................................................... 23 3.2.1 Biofilm cultivation ...................................................................................... 23 3.2.2 Dry weight and autotrophic index ............................................................. 23 3.2.4 Pigment analysis of periphyton ................................................................. 23 3.2.4.1 In-vivo pigment analysis for community characterization ....................... 24 3.2.4.2 In-vivo pigment analysis based on Imaging-PAM fluorometry ............... 24 3.2.4.3 In-vivo pigment fluorescence for tolerance detection ............................. 26 3.2.4.4 Ex-vivo pigment analysis by high-pressure liquid-chromatography ....... 27 3.2.5 Community oxygen metabolism measurements ....................................... 28 3.3 Results and discussion ................................................................................... 29 3.3.1 Comparison of the structural community parameters ............................... 29 3.3.2 Photosynthetic activity and primary production of the communities after selection phase ................................................................................................. 33 3.3.3 Acquisition of photosynthetic tolerance .................................................... 34 3.3.4 Primary production at exposure conditions ............................................... 36 3.3.5 Tolerance detection in primary production ................................................ 37 3.4 Summary and Conclusion ........................................................................... 40 4. Community gene expression analysis by meta-transcriptomics ................... 41 4.1 Introduction to meta-transcriptomics ............................................................... 41 4.2. Methods ......................................................................................................... 43 4.2.1 Sampling and RNA extraction................................................................... 43 4.2.2 RNA sequencing analysis ......................................................................... 44 4.2.3 Data assembly and processing................................................................. 45 4.2.4 Prioritization of contigs and annotation ..................................................... 47 4.2.5 Sensitivity analysis of biological processes .............................................. 48 4.3 Results and discussion ................................................................................... 48 4.3.1 Characterization of the meta-transcriptomic fingerprints .......................... 49 4.3.2 Insights into community stress response mechanisms using trend analysis (DRomic’s) ......................................................................................................... 51 4.3.3 Response pattern in the isoform PS genes .............................................. 63 4.5 Summary and conclusion ................................................................................ 65 5. Community metabolome analysis ..................................................................... 66 5.1 Introduction to community metabolomics ........................................................ 66 5.2 Methods .......................................................................................................... 68 5.2.1 Sampling, metabolite extraction and derivatisation................................... 68 5.2.2 GC-TOF-MS analysis ............................................................................... 69 5.2.3 Data processing and statistical analysis ................................................... 69 5.3 Results and discussion ................................................................................... 70 5.3.1 Characterization of the metabolic fingerprints .......................................... 70 5.3.2 Difference in the metabolic fingerprints .................................................... 71 5.3.3 Differential metabolic responses of the communities to short-term exposure of diuron ............................................................................................................ 73 5.4 Summary and conclusion ................................................................................ 78 6. Synthesis ............................................................................................................. 79 6.1 Approaches and challenges for linking molecular data to functional measurements ...................................................................................................... 79 6.2 Methods .......................................................................................................... 83 6.2.1 Summary on the data ............................................................................... 83 6.2.2 Aggregation of molecular data to index values (TELI and MELI) .............. 83 6.2.3 Functional annotation of contigs and metabolites using KEGG ................ 83 6.3 Results and discussion ................................................................................... 85 6.3.1 Results of aggregation techniques ........................................................... 85 6.3.2 Sensitivity analysis of the different molecular approaches and endpoints 86 6.3.3 Mechanistic view of the molecular stress responses based on KEGG functions ............................................................................................................ 89 6.4 Consolidation of the results – holistic interpretation and discussion ............... 93 6.4.1 Adaptation to chronic diuron exposure - from molecular changes to community effects.............................................................................................. 93 6.4.2 Assessment of the ecological costs of Pollution-induced community tolerance based on primary production ............................................................. 94 6.5 Outlook ............................................................................................................ 97
72

Modellierung, Analyse und Bewertung des chemischen Gewässerzustandes in Flussgebieten

Heß, Oliver 13 June 2005 (has links)
Modellierung, Analyse und Bewertung des chemischen Gewässerzustandes in Flussgebieten Der Schwerpunkt der chemischen Belastungen von Oberflächengewässern durch Abwasseremissionen verlagert sich in jüngerer Zeit, durch die Ertüchtigung der Abwasserreinigungsanlagen, von biologisch leicht abbaubaren organischen Substanzen hin zu Mikroverunreinigungen. Die Expositionsanalyse von Gewässersystemen gegen xenobiotische Substanzen mit dem Ziel einer Steuerung der Belastungen rückt immer mehr in den Vordergrund des Interesses (EG 2000, EG 2001). Am Beispiel des nordrhein-westfälischen Rheineinzugsgebiets wird in der vorliegenden Arbeit eine Analyse und Bewertung des chemischen Gewässerzustandes durch georeferenzierte Modellierung von Flussgebieten durchgeführt. Eingesetzt wird das Modellsystem GREAT-ER (Georeferenced Regional Exposure Assessment Tool for European Rivers). Der methodische Teil der Arbeit beschreibt die Kalibrierung des Modellsystems für das Einzugsgebiet des Rheins in Nordrhein-Westfalen. Weiter werden die für die Modellierung notwendigen Eingangsparameter verschiedener beispielhafter Substanzen aus verschiedenen Quellen hergeleitet. In den Anwendungsstudien werden Simulationsergebnisse für die Stoffe Bor, EDTA, HHCB, und Diclofenac sowie Diuron und Ammoniumstickstoff dargestellt und mit Messwerten der Gewässerkonzentrationen verglichen. Die Emissionsmengen für Bor und EDTA aus dem Gebrauch im Haushalt sind gut quantifizierbar. Beide Substanzen verhalten sich in den Gewässern konservativ und konnten deshalb für die Kalibrierung des Modellsystems genutzt werden. HHCB und Diclofenac sind Substanzen, die typischerweise über Haushaltsabwässer in die Gewässer gelangen, aus diesen jedoch gut eliminiert werden. Das Pestizid Diuron gelangt mit dem Oberflächenabfluss von versiegelten Flächen in das Abwasser und die Gewässer. Die Elimination aus den Gewässern ist gering. In der Arbeit wird eine Quantifizierung der Emissionsmengen auf Basis der versiegelten Flächen durchgeführt und damit eine räumliche Zuordnung der Eintragsmengen erreicht. Mit Ammoniumstickstoff wird schließlich die Gewässerexposition einer Substanz berechnet, die auch über diffuse Quellen in die Gewässer gelangt. Grundannahme ist hier, dass die Frachten aus Punktquellen die diffusen Einträge überlagern. In Abhängigkeit von der jeweiligen Substanz und Lage der Messstellen zeigen die Ergebnisse sowohl gute Übereinstimmung als auch stellenweise große Abweichungen zu den gemessenen Substanzkonzentrationen in den Gewässern. Für die auftretenden Abweichungen ergeben sich Erklärungsansätze, aber auch weiterer Untersuchungsbedarf wird deutlich. Die Ergebnisse der Arbeit belegen, dass das mit GREAT-ER entwickelte Werkzeug zur georeferenzierten Modellierung von Substanzkonzentrationen in Gewässern auf dem Gebiet der zeitlichen und räumlichen Analyse von realen Messwerten und im Rahmen eines Immissions- und Belastungsmanagements einsetzbar ist. Es können aus den Umgebungsparametern begründete Hypothesen zu lokalen Substanzkonzentrationen in Gewässern entwickelt werden, deren Informationsgehalt gegenüber Messung und generischer Modellierung höher ist.
73

Biosensors for Environmental Monitoring and Biomedical Applications / Biosensors for Environmental Monitoring and Biomedical Applications

ŠTOFIK, Marcel January 2012 (has links)
Study of biosensors has become an essential part of research in biotechnology. Biosensors as fast, portable, highly sensitive, and low-cost bioanalytical detection devices have been utilized in many fields of human activity. The first part of the presented work focuses on electrochemical biosensors for rapid environmental screening of herbicides as water pollutants. A sol-gel immobilization method for a photosystem II (PSII) complex is studied in order to enhance the sensitivity and the signal strength and stability of a PSII-based biosensor. Computer simulations of a PSII biosensor are employed with the aim to find out how the immobilization membrane properties influence the biosensor parameters. Newly developed immobilization by a thin-layer membrane based on the results of computer simulations and revised measurement protocols are presented. The second part of the work is devoted to synthesis and electrochemical detection of newly developed metal labels for electrochemical immunosensors. The synthesis of dendrimer-encapsulated silver nanoparticles and biorecognition properties of biotin-nanocomposite conjugates are discussed. For detection of synthesized labels, a microfluidic detector was manufactured and tested and different approaches to packing of a microfluidic chip employing polydimethylsiloxane (PDMS) were investigated. Newly designed microstructures for a microfluidic separator of magnetic beads (MBs) were studied by computer simulations. The separator was made and trapping of MBs for the further employment in MBs-based immunoassays are presented

Page generated in 0.0317 seconds