• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identificação e caracterização de novos moduladores da divisão em Bacillus subtilis / Identification and characterization of new modulators of division in B. subtilis

Tavares, José Roberto 31 July 2009 (has links)
Em procariotos, a principal forma de reprodução é a divisão binária, que permite à célula-mãe dar origem a duas outras células-filhas, com conteúdo genético idêntico ao da progenitora. Em Bacillus subtilis este processo acontece graças ao divisomo, um complexo formado por aproximadamente dezesseis proteínas, que leva à constrição da membrana e da parede, formando o septo de divisão. A montagem do divisomo é coordenada por FtsZ, um homólogo de tubulina, que polimeriza na região central da bactéria e serve de arcabouço para a montagem do divisomo. Partindo de um levantamento detalhado da distribuição dos genes envolvidos em divisão em genomas completos de procariotos detectamos que divIVA, um gene de divisão já bem caracterizado, apresentava um gene parálogo em B. subtilis, conhecido como ypsB. Para determinarmos se YpsB seria um novo componente do divisomo foi realizada uma caracterização citológica e funcional desta proteína. Utilizamos microscopia de fluorescência e fusões de YpsB a GFP para determinar a localização subcelular de YpsB. Estes experimentos revelaram que YpsB está presente no divisomo, apresentando um padrão de localização semelhante mas não idêntico ao de DivIVA. Medindo-se a taxa de co-localização entre o anel Z e YpsB ficou demonstrado que estas proteínas co-localizam em aproximadamente 50%, sugerindo que YpsB é recrutada depois que o anel Z é montado. Para determinar quando YpsB chega ao divisomo, usamos mutantes termo-sensíveis das proteínas de divisão que revelaram a dependência de YpsB pelo sub complexo DivIB-DivIC-FtsL-FtsW-PBP2B. Já na ausência de DivIVA, YpsB continua associado ao divisomo, indicando que não depende do seu parálogo para localizar. Além disso, análises de deleções de YpsB mostraram que a porção N-terminal da proteína é a mais importante para o seu recrutamento ao divisomo. Para determinarmos o papel de YpsB durante a divisão foi construído um mutante com deleção completa do gene. DivIVA é uma proteína responsável por localizar o sistema Min nos pólos da bactéria e assim contribui para a precisão espacial da divisão. Apesar de serem parálogos, a função de YpsB, no entanto, parece ser diferente da de DivIVA. Análise do mutante ypsB- mostrou que na sua ausência, o divisomo é montado e o seu posicionamento tanto em fase vegetativa como em esporulação não são afetados. Como a ausência de YpsB não afeta perceptivelmente a divisão, combinamos a mutação em ypsB com mutações em outros genes envolvidos em divisão. A análise destes duplos mutantes revelou que a ausência simultânea de YpsB e FtsA produz exacerbada lise celular e letalidade. Com base neste fenótipo e em evidências evolutivas, sugerimos que YpsB esteja envolvida na regulação da síntese de peptideoglicano do septo. Mais especificamente, YpsB seria responsável por modular a atividade de PBP1, uma enzima necessária para a síntese de peptideoglicano septal. / In prokaryotes, the main form of reproduction is binary fission, which allows the mother-cell to give origin the two daughter-cells, with identical genetic material. In Bacillus subtilis, this process is performed by the divisome, a complex formed for approximately sixteen proteins that leads to the constriction of the membrane and the wall, creating the division septum. The assembly of the divisome is coordinated by FtsZ, a homolog of tubulin, that polymerizes in the central region of the bacteria and serves as the base for the assembly of the divisome. From a detailed survey of the distribution of the genes involved in division in complete genomes of prokaryotes, we detected that divIVA, a well characterized division gene, showed a paralog in B. subtilis, known as YpsB. To determine if YpsB would be a new component of the divisome, a cytological and functional characterization of this protein was carried out. We used fluorescence microscopy and fusion of YpsB to GFP to determine the subcellular localization of YpsB. These experiments displayed that YpsB is present in the divisome, with similar but not identical localization as DivIVA. Measuring co-localization between the Z ring and YpsB demonstrated that this happened in approximately 50% of the cells, suggesting that YpsB go to the divisome after the Z ring is formed. To determine when YpsB goes to the divisome, we used temperature-sensitive mutants of the division proteins. This showed that YpsB depends on the DivIB-DivIC-FtsL-FtsW-PBP2B sub-complex to associate with the divisome. In the absence of DivIVA, YpsB is still present in the divisome, indicating that it does not depend on its paralog to localize. Moreover, deletion analyses of YpsB showed that the N-terminal portion of the protein is the most important for its recruitment to the divisome. To determine the role of YpsB during division, we constructed a ypsB- mutant. DivIVA is the protein responsible for localization of the Min system in polar regions of B. subtilis and, thus, contributes for the spatial precision of division. Our results showed that the function of YpsB must be different from that of DivIVA, since analysis of the ypsB- mutant showed that in the absence this protein the divisome is assembled and septum position in vegetatively growing or sporulating cells is not affected. Since the absence of YpsB does not affect division, we combined the ypsB- mutant with mutants involved in division. Analysis of these double mutants showed that the simultaneous absence of YpsB and FtsA caused cellular lysis and lethality. Based on this phenotype and evolutionary evidences, we suggest that YpsB is involved in the regulation of peptidoglycan synthesis in the septum. More specifically, YpsB would be responsible for modulating the activity of PBP1, a necessary enzyme for septum peptidoglycan synthesis.
2

Identificação e caracterização de novos moduladores da divisão em Bacillus subtilis / Identification and characterization of new modulators of division in B. subtilis

José Roberto Tavares 31 July 2009 (has links)
Em procariotos, a principal forma de reprodução é a divisão binária, que permite à célula-mãe dar origem a duas outras células-filhas, com conteúdo genético idêntico ao da progenitora. Em Bacillus subtilis este processo acontece graças ao divisomo, um complexo formado por aproximadamente dezesseis proteínas, que leva à constrição da membrana e da parede, formando o septo de divisão. A montagem do divisomo é coordenada por FtsZ, um homólogo de tubulina, que polimeriza na região central da bactéria e serve de arcabouço para a montagem do divisomo. Partindo de um levantamento detalhado da distribuição dos genes envolvidos em divisão em genomas completos de procariotos detectamos que divIVA, um gene de divisão já bem caracterizado, apresentava um gene parálogo em B. subtilis, conhecido como ypsB. Para determinarmos se YpsB seria um novo componente do divisomo foi realizada uma caracterização citológica e funcional desta proteína. Utilizamos microscopia de fluorescência e fusões de YpsB a GFP para determinar a localização subcelular de YpsB. Estes experimentos revelaram que YpsB está presente no divisomo, apresentando um padrão de localização semelhante mas não idêntico ao de DivIVA. Medindo-se a taxa de co-localização entre o anel Z e YpsB ficou demonstrado que estas proteínas co-localizam em aproximadamente 50%, sugerindo que YpsB é recrutada depois que o anel Z é montado. Para determinar quando YpsB chega ao divisomo, usamos mutantes termo-sensíveis das proteínas de divisão que revelaram a dependência de YpsB pelo sub complexo DivIB-DivIC-FtsL-FtsW-PBP2B. Já na ausência de DivIVA, YpsB continua associado ao divisomo, indicando que não depende do seu parálogo para localizar. Além disso, análises de deleções de YpsB mostraram que a porção N-terminal da proteína é a mais importante para o seu recrutamento ao divisomo. Para determinarmos o papel de YpsB durante a divisão foi construído um mutante com deleção completa do gene. DivIVA é uma proteína responsável por localizar o sistema Min nos pólos da bactéria e assim contribui para a precisão espacial da divisão. Apesar de serem parálogos, a função de YpsB, no entanto, parece ser diferente da de DivIVA. Análise do mutante ypsB- mostrou que na sua ausência, o divisomo é montado e o seu posicionamento tanto em fase vegetativa como em esporulação não são afetados. Como a ausência de YpsB não afeta perceptivelmente a divisão, combinamos a mutação em ypsB com mutações em outros genes envolvidos em divisão. A análise destes duplos mutantes revelou que a ausência simultânea de YpsB e FtsA produz exacerbada lise celular e letalidade. Com base neste fenótipo e em evidências evolutivas, sugerimos que YpsB esteja envolvida na regulação da síntese de peptideoglicano do septo. Mais especificamente, YpsB seria responsável por modular a atividade de PBP1, uma enzima necessária para a síntese de peptideoglicano septal. / In prokaryotes, the main form of reproduction is binary fission, which allows the mother-cell to give origin the two daughter-cells, with identical genetic material. In Bacillus subtilis, this process is performed by the divisome, a complex formed for approximately sixteen proteins that leads to the constriction of the membrane and the wall, creating the division septum. The assembly of the divisome is coordinated by FtsZ, a homolog of tubulin, that polymerizes in the central region of the bacteria and serves as the base for the assembly of the divisome. From a detailed survey of the distribution of the genes involved in division in complete genomes of prokaryotes, we detected that divIVA, a well characterized division gene, showed a paralog in B. subtilis, known as YpsB. To determine if YpsB would be a new component of the divisome, a cytological and functional characterization of this protein was carried out. We used fluorescence microscopy and fusion of YpsB to GFP to determine the subcellular localization of YpsB. These experiments displayed that YpsB is present in the divisome, with similar but not identical localization as DivIVA. Measuring co-localization between the Z ring and YpsB demonstrated that this happened in approximately 50% of the cells, suggesting that YpsB go to the divisome after the Z ring is formed. To determine when YpsB goes to the divisome, we used temperature-sensitive mutants of the division proteins. This showed that YpsB depends on the DivIB-DivIC-FtsL-FtsW-PBP2B sub-complex to associate with the divisome. In the absence of DivIVA, YpsB is still present in the divisome, indicating that it does not depend on its paralog to localize. Moreover, deletion analyses of YpsB showed that the N-terminal portion of the protein is the most important for its recruitment to the divisome. To determine the role of YpsB during division, we constructed a ypsB- mutant. DivIVA is the protein responsible for localization of the Min system in polar regions of B. subtilis and, thus, contributes for the spatial precision of division. Our results showed that the function of YpsB must be different from that of DivIVA, since analysis of the ypsB- mutant showed that in the absence this protein the divisome is assembled and septum position in vegetatively growing or sporulating cells is not affected. Since the absence of YpsB does not affect division, we combined the ypsB- mutant with mutants involved in division. Analysis of these double mutants showed that the simultaneous absence of YpsB and FtsA caused cellular lysis and lethality. Based on this phenotype and evolutionary evidences, we suggest that YpsB is involved in the regulation of peptidoglycan synthesis in the septum. More specifically, YpsB would be responsible for modulating the activity of PBP1, a necessary enzyme for septum peptidoglycan synthesis.
3

The essentiality of DivIVA<sub>Ef</sub> oligomerization for proper cell division in <i>enterococcus faecalis</i> and interaction with a novel cell division protein

Hedlin, Cherise Elizabeth 15 April 2009
DivIVA is a Gram-positive cell division protein involved in chromosome segregation, midcell placement of the cell division machinery, complete septum closure, and polar growth and morphogenesis. Although well conserved across various Gram-positive species, DivIVA is believed to be relatively species specific. One similarity among DivIVA homologues is the ability to oligomerize through coiled-coil interaction into complexes comprising 10-12 monomers. To date, the importance of DivIVA oligomerization and the N-terminal coiled-coil for its proper function in bacterial cell division has not been reported. This study examined the biological significance of DivIVA oligomerization and the N-terminal coiled-coil in bacterial cell division. This research provides evidence that the N-terminal coiled-coil and oligomerization is essential for the proper biological function of DivIVA<sub>Ef</sub> in <i>Enterococcus faecalis</i> cell division. Introduction of point mutations into chromosomal <i>divIVA</i><sub>Ef</sub> known to disrupt either the N-terminal coiled-coil or the two central coiled-coils, involved in oligomerization, were found to be lethal unless rescued by <i>in trans</i> expression of wild type DivIVA<sub>Ef</sub>. Using this rescue method, the N-terminal <i>divIVA</i><sub>Ef</sub> mutant strain, <i>E. faecalis</i> MWMR5, and the mutant strain with partial disruption of oligomerization, <i>E. faecalis</i> MWMR10, were successfully rescued. Differential Interference Contrast (DIC) and Transmission Electron Microscopy (TEM) were utilized to determine the phenotypes of <i>divIVA</i><sub>Ef</sub> mutant strains <i>E. faecalis</i> MWMR5 and MWMR10. Both these strains showed asymmetrical division, loss of normal lancet shape, and irregular chains. Full disruption of oligomerization with point mutations in both central coiled-coils resulted in a dominant lethal phenotype. These results demonstrate the essentiality of the N-terminal coiled-coil and oligomerization of DivIVA<sub>Ef</sub> for its proper biological function in <i>E. faecalis</i> cell division.<p> Previous detection of DivIVA interaction with a novel cell division protein, MLJD1, by screening a Yeast Two-Hybrid (Y2H) was weak. GST-pulldown and immunoprecipitation did indicate DivIVA<sub>Ef</sub> interaction with MLJD1, but another in vivo assay was required to support these results. In this study I demonstrate a strong interaction, using an in vivo Bacterial Two-Hybrid (B2H) assay, between DivIVA<sub>Ef</sub> and a fragment of MLJD1 containing two cystathionine-beta-synthase (CBS) domains. The <i>in vitro</i> and <i>in vivo</i> results thus confirm interaction between DivIVA<sub>Ef</sub> and MLJD1.<p> Another objective of this study was to determine the localization of DivIVA and MLJD1 in <i>E. faecalis</i>. Localization of DivIVA<sub>Ef</sub> in <i>E. faecalis</i> was found to be similar to DivIVA localization in <i>Bacillus subtilis</i> and <i>Streptococcus pneumonia</i>. DivIVA<sub>Ef</sub> was diffused along the cell membrane and, as chromosome replication and segregation and cell division proceeded, DivIVA<sub>Ef</sub> migrated to the cell poles and then concurrently to the division site. Intriguingly, MLJD1 was found to localize in the same pattern as DivIVA<sub>Ef</sub> in <i>E. faecalis</i>, further implicating MLJD1 as a bacterial cell division protein.<p> Since MLJD1 has potential DNA binding capabilities a proposed model of its role in cell division has been proposed. I hypothesize that MLJD1 could be forming a bridge between DivIVA<sub>Ef</sub> and the chromosome to aid in proper chromosomal replication and segregation. This model could explain how DivIVA<sub>Ef</sub> is involved in chromosome replication. This model is similar to the role of RacA in sporulation in <i>B. subtilis</i> where RacA directs the chromosome during sporulation through direct interaction with DivIVA<sub>Bs</sub> and Spo0J.<p> This study has set some important and essential ground work for developing a novel model of cell division for the elusive Gram-positive coccal bacterial strains.
4

The essentiality of DivIVA<sub>Ef</sub> oligomerization for proper cell division in <i>enterococcus faecalis</i> and interaction with a novel cell division protein

Hedlin, Cherise Elizabeth 15 April 2009 (has links)
DivIVA is a Gram-positive cell division protein involved in chromosome segregation, midcell placement of the cell division machinery, complete septum closure, and polar growth and morphogenesis. Although well conserved across various Gram-positive species, DivIVA is believed to be relatively species specific. One similarity among DivIVA homologues is the ability to oligomerize through coiled-coil interaction into complexes comprising 10-12 monomers. To date, the importance of DivIVA oligomerization and the N-terminal coiled-coil for its proper function in bacterial cell division has not been reported. This study examined the biological significance of DivIVA oligomerization and the N-terminal coiled-coil in bacterial cell division. This research provides evidence that the N-terminal coiled-coil and oligomerization is essential for the proper biological function of DivIVA<sub>Ef</sub> in <i>Enterococcus faecalis</i> cell division. Introduction of point mutations into chromosomal <i>divIVA</i><sub>Ef</sub> known to disrupt either the N-terminal coiled-coil or the two central coiled-coils, involved in oligomerization, were found to be lethal unless rescued by <i>in trans</i> expression of wild type DivIVA<sub>Ef</sub>. Using this rescue method, the N-terminal <i>divIVA</i><sub>Ef</sub> mutant strain, <i>E. faecalis</i> MWMR5, and the mutant strain with partial disruption of oligomerization, <i>E. faecalis</i> MWMR10, were successfully rescued. Differential Interference Contrast (DIC) and Transmission Electron Microscopy (TEM) were utilized to determine the phenotypes of <i>divIVA</i><sub>Ef</sub> mutant strains <i>E. faecalis</i> MWMR5 and MWMR10. Both these strains showed asymmetrical division, loss of normal lancet shape, and irregular chains. Full disruption of oligomerization with point mutations in both central coiled-coils resulted in a dominant lethal phenotype. These results demonstrate the essentiality of the N-terminal coiled-coil and oligomerization of DivIVA<sub>Ef</sub> for its proper biological function in <i>E. faecalis</i> cell division.<p> Previous detection of DivIVA interaction with a novel cell division protein, MLJD1, by screening a Yeast Two-Hybrid (Y2H) was weak. GST-pulldown and immunoprecipitation did indicate DivIVA<sub>Ef</sub> interaction with MLJD1, but another in vivo assay was required to support these results. In this study I demonstrate a strong interaction, using an in vivo Bacterial Two-Hybrid (B2H) assay, between DivIVA<sub>Ef</sub> and a fragment of MLJD1 containing two cystathionine-beta-synthase (CBS) domains. The <i>in vitro</i> and <i>in vivo</i> results thus confirm interaction between DivIVA<sub>Ef</sub> and MLJD1.<p> Another objective of this study was to determine the localization of DivIVA and MLJD1 in <i>E. faecalis</i>. Localization of DivIVA<sub>Ef</sub> in <i>E. faecalis</i> was found to be similar to DivIVA localization in <i>Bacillus subtilis</i> and <i>Streptococcus pneumonia</i>. DivIVA<sub>Ef</sub> was diffused along the cell membrane and, as chromosome replication and segregation and cell division proceeded, DivIVA<sub>Ef</sub> migrated to the cell poles and then concurrently to the division site. Intriguingly, MLJD1 was found to localize in the same pattern as DivIVA<sub>Ef</sub> in <i>E. faecalis</i>, further implicating MLJD1 as a bacterial cell division protein.<p> Since MLJD1 has potential DNA binding capabilities a proposed model of its role in cell division has been proposed. I hypothesize that MLJD1 could be forming a bridge between DivIVA<sub>Ef</sub> and the chromosome to aid in proper chromosomal replication and segregation. This model could explain how DivIVA<sub>Ef</sub> is involved in chromosome replication. This model is similar to the role of RacA in sporulation in <i>B. subtilis</i> where RacA directs the chromosome during sporulation through direct interaction with DivIVA<sub>Bs</sub> and Spo0J.<p> This study has set some important and essential ground work for developing a novel model of cell division for the elusive Gram-positive coccal bacterial strains.
5

Úloha proteinkinázy StkP v regulaci buněčného dělení Streptococcus pneumoniae / The role of protein kinase StkP in regulation of the cell division in Streptococcus pneumoniae

Malíková, Eliška January 2011 (has links)
Protein phosphorylation by protein kinases is a key mechanizm that enables both eukaryotic and prokaryotic organizm sense and read environmental signals and convert these signals into changes in gene expression and thus proper biological response. One of the main phosphorylation systems in bacteria consists of eukaryotic-like Ser/ Thr protein kinases. The genome of human pathogen Streptococcus pneumoniae contains single Ser/ Thr protein kinase StkP. StkP regulates virulence, competence, stress resistance, gene expression and plays an important role in the regulation of cell division cycle. Analysis of phosphoproteome maps of both wild type and ΔstkP mutant strain of S. pneumoniae showed that in vivo StkP phosphorylates several putative substrates including the cell division protein DivIVA (NOVÁKOVÁ et al., 2010). DivIVA in S. pneumoniae is localized at midcell and at the cell poles. It was proposed to be primarily involved in the formation and maturation of the cell poles (FADDA et al., 2007). The aim of this thesis was to investigate phosphorylation of the cell division protein DivIVA in S. pneumoniae. Gene divIVA was cloned, expressed in E. coli and protein was purified via affinity chromatography. Phosphorylation of DivIVA by StkP was examined in a kinase assay. We confirmed that DivIVA is a direct...

Page generated in 0.0224 seconds