• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessment of Divergence Free Wavelet Transform Filtering of 4D flow MRI Data for Cardiovascular Applications

Boito, Deneb January 2018 (has links)
4D flow MRI is an imaging technique able to provide relevant information on patients’ cardiac health condition both from a visual and a quantitative point of view. Its applicability is however limited by uncertainty in the data due to the presence of noise. A new class of filters, called divergence free filters, was recently proposed. They incorporate physical knowledge into the filtering of 4D flow data. One way to implement divergence filters is via wavelet transform. The filtering process using the Divergence Free Wavelet Transform can be carried out in a completely automated fashion and was shown to hold promising results. The focus of this thesis was thus put towards assessing the effect produced by these filters on a large cohort of patients. Time-resolved segmentations were incorporated into the filtering process as this was thought to enhance divergence reduction. They were also used to investigate the filtering in every region of the thoracic cardiovascular system. The assessment of the filters was carried out both from a visual and a quantitative perspective. In-house tools were used to compute clinically used parameters on the data before and after the filtering to investigate the introduced change. The results showed that the used method was able to reduce divergence like noise while preserving all the relevant information contained in the original data, in all the regions of the heart. Flow quantifications were essentially unchanged by the filtering suggesting that the method can be safely applied on 4D flow data.

Page generated in 0.088 seconds