• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • Tagged with
  • 19
  • 19
  • 14
  • 13
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Diversity-Multiplexing Gain Tradeoff Of Cooperative Multi-hop Networks

Birenjith, P S 07 1900 (has links)
We consider single-source single-sink (ss-ss) multi-hop relay networks, with slow-fading links and single-antenna half-duplex relay nodes. While two-hop cooperative relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this paper, we identify two families of networks that are multi-hop generalizations of the two-hop network: K-Parallel-Path (KPP) networks and layered networks. KPP networks can be viewed as the union of K node-disjoint parallel relaying paths, each of length greater than one. KPP networks are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the DMT of these families of networks completely for K > 3. Layered networks are networks comprising of layers of relays with edges existing only between adjacent layers, with more than one relay in each layer. We prove that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4. For multiple-antenna KPP and layered networks, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks. For arbitrary multi-terminal wireless networks with multiple source-sink pairs, the maximum achievable diversity is shown to be equal to the min-cut between the corresponding source and the sink, irrespective of whether the network has half-duplex or full-duplex relays. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable. Along the way, we derive the optimal DMT of a generalized parallel channel and derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. All protocols in this paper are explicit and use only amplify-and-forward (AF) relaying. We also construct codes with short block-lengths based on cyclic division algebras that achieve the optimal DMT for all the proposed schemes. Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple AF protocols are often sufficient to attain the optimal DMT.
12

Diversity Multiplexing Tradeoff and Capacity Results in Relayed Wireless Networks

Oveis Gharan, Shahab January 2010 (has links)
This dissertation studies the diversity multiplexing tradeoff and the capacity of wireless multiple-relay network. In part 1, we study the setup of the parallel Multi-Input Multi-Output (MIMO) relay network. An amplify-and-forward relaying scheme, Incremental Cooperative Beamforming, is introduced and shown to achieve the capacity of the network in the asymptotic case of either the number of relays or the power of each relay goes to infinity. In part 2, we study the general setup of multi-antenna multi-hop multiple- relay network. We propose a new scheme, which we call random sequential (RS), based on the amplify-and-forward relaying. Furthermore, we derive diversity- multiplexing tradeoff (DMT) of the proposed RS scheme for general single-antenna multiple-relay networks. It is shown that for single-antenna two-hop multiple- access multiple-relay (K > 1) networks (without direct link between the source(s) and the destination), the proposed RS scheme achieves the optimum DMT. In part 3, we characterize the maximum achievable diversity gain of the multi- antenna multi-hop relay network and we show that the proposed RS scheme achieves the maximum diversity gain. In part 4, RS scheme is utilized to investigate DMT of the general multi-antenna multiple-relay networks. First, we study the case of a multi-antenna full-duplex single-relay two-hop network, for which we show that the RS achieves the optimum DMT. Applying this result, we derive a new achievable DMT for the case of multi-antenna half-duplex parallel relay network. Interestingly, it turns out that the DMT of the RS scheme is optimum for the case of multi-antenna two parallel non-interfering half-duplex relays. Furthermore, we show that random unitary matrix multiplication also improves the DMT of the Non-Orthogonal AF relaying scheme in the case of a multi-antenna single relay channel. Finally, we study the general case of multi-antenna full-duplex relay networks and derive a new lower-bound on its DMT using the RS scheme. Finally, in part 5, we study the multiplexing gain of the general multi-antenna multiple-relay networks. We prove that the traditional amplify-forward relaying achieves the maximum multiplexing gain of the network. Furthermore, we show that the maximum multiplexing gain of the network is equal to the minimum vertex cut-set of the underlying graph of the network, which can be computed in polynomial time in terms of the number of network nodes. Finally, the argument is extended to the multicast and multi-access scenarios.
13

Analysis of near-optimal relaying schemes for wireless tandem and multicast relay networks

Xue, Q. (Qiang) 12 January 2016 (has links)
Abstract This thesis is devoted to studying two wireless relay network models, namely wireless tandem multiple-input-multiple-output (MIMO) relay networks and wireless two-hop multicast relay networks. Regarding wireless tandem MIMO relay networks, we develop a systematic approach to analyze their fundamental diversity-multiplexing tradeoff (DMT) under the assumption that the relays implement a class of practical full-duplex techniques that enable them to opt for either full-duplex or half-duplex mode. Based on the analysis, we make contribution from the following aspects: First of all, we thoroughly compare the performance of full-duplex and half-duplex mode operations in the framework of wireless tandem relay networks. We find that both full-duplex and half-duplex modes have opportunity to outperform each other. Specifically, for many tandem relay networks, in the low multiplexing gain region, the best relay-mode configuration is to let all the relays operate in half-duplex mode since this relay-mode configuration achieves the best diversity gain in the low multiplexing gain region. However, in the high multiplexing gain region, the best diversity gain is usually achieved by switching some relays to full-duplex mode. Furthermore, we study how residual interference at relays working in full-duplex mode affects the DMT of a tandem network. We find that residual interference not only derogates the performance of full-duplex mode, but also affects the optimal power allocation of the network. Specifically, if residual interference is zero or has a sufficiently low power level, a linear power allocation scheme can achieve the optimal DMT of the network. Otherwise, the optimal DMT is achieved by a nonlinear power allocation scheme. Finally, the DMT analysis illustrates an effective principle to deal with general multi-hop wireless networks, which is to break them down into small scale subnetworks with certain key structures. Then, studying the general multi-hop wireless networks essentially becomes studying those small scale subnetworks and the relationship among them. Regarding wireless two-hop multicast relay networks, we focus on a case study where a single source multicasts to two destinations through the assistance of two relays. We propose and analyze the performance of a partial decode-and-forward protocol for the network, which includes the full decode-and-forward protocol as a special case and achieves a better performance in general. Specifically, we prove that the achievable rate of the partial decode-and-forward protocol can either reach arbitrarily close to the cut-set upper bound of the network or reach within 1 bit/s/Hz to that, asymptotically with respect to the transmit power. We also show that the partial decode-and-forward protocol can achieve the optimal DMT of the network. Then, we discuss the perspective of implementing the partial decode-and-forward strategy to more general multicast relay networks. / Tiivistelmä Tämä opinnäytetyö tutkii kahta langatonta välitysverkkomallia, nimittäin langatonta tandem multiple-input-multiple-output (MIMO) välitysverkkoa ja langatonta monilähetysvälitysverkkoa kahdelle hypylle. Kehitämme systemaattisen lähestymistavan diversiteetti-multipleksointi vaihtokaupan (DMT) analysointiin langattomiin tandem MIMO välitysverkkoihin, olettaen välittäjien käyttävän käytännöllisiä full-duplex lähetystekniikoita, jotka mahdollistavat valinnan joko full-duplex tai half-duplex lähetystilan välillä. Analyysin perusteella kontribuoimme seuraavilla tavoilla: Ensinnäkin, vertailemme perusteellisesti full-duplex sekä half-duplex lähetystiloja langattomissa tandem välitysverkoissa. Huomaamme, että molemmat full-duplex ja half-duplex lähetystilat voivat suoriutua toinen toistaan paremmin. Tarkemmin sanoen, monissa tandem välitysverkoissa silloin kun multipleksoinnin hyöty on alhainen, paras välitystapa on antaa kaikkien välittäjien käyttää half-duplex lähetystilaa, koska silloin saavutetaan paras diversiteettilisäys. Toisaalta, kun multipleksointilisäys on suuri, paras diversiteettilisäys saadaan yleensä asettamalla jotkin välittäjät full-duplex lähetystilaan. Lisäksi, tutkimme kuinka full-duplex lähetystilaa käyttävien välittäjien jäljelle jäävä interferenssi vaikuttaa tandemverkon DMT:aan. Huomaamme, että jäljelle jäävä interferenssi vähentää full-duplex mallin tehokkuutta ja lisäksi vaikuttaa optimaaliseen tehonjakamiseen verkossa. Tarkemmin sanoen, jos jäljelle jäävä interferenssin tehotaso on nolla tai tarpeeksi lähellä sitä, lineaarisella tehojaolla voi saavuttaa verkon optimaalisen DMT:n. Muutoin, optimaalinen DMT saavutetaan epälineaarisella tehojaolla. Lopuksi, DMT analyysi havainnollistaa tehokkaan periaatteen yleisluontoisten monihyppyverkkojen käsittelemiseen, eli verkon jakamisen pienempiin osiin erilaiin avainrakenteisiin. Tämän jälkeen yleisluntoisten langattoimen monihyppyverkkojen tutkiminen tapahtuu tutkimalla näitä pieniä osia ja niiden välisiä vuorovaikutussuhteita. Langattomaan kahden hypyn monilähetysvälitysverkkon osalta keskitymme tapaustutkimukseen, jossa yksi lähettäjä monilähettää kahdelle vastaanottajalle kahden välittäjän avulla. Ehdotamme tälle verkolle osittaista decode-and-forward protokollaa, joka sisältää täyden decode-and-forward protokollan erikoistapauksena ja saavuttaa yleisesti tätä protokollaa paremman tehokkuuden. Tarkemmin sanoen, todistamme että tällä protokollalla siirtonopeus lähetystehon suhteen joko lähenee asymptoottisesti verkon cut-set ylärajaa mielivaltaisen lähelle tai saavuttaa sen 1 bit/s/Hz sisään. Osoitamme myös, että osittainen decode-and-forward protokolla voi saavuttaa verkon optimaalisen DMT:n. Tämän jälkeen, käsittelemme osittaisen decode-and-forward strategian impelentointia yleisluontoisille monilähetysvälitysverkoille.
14

Outage limited cooperative channels: protocols and analysis

Azarian Yazdi, Kambiz 13 September 2006 (has links)
No description available.
15

On Throughput-Reliability-Delay Tradeoffs in Wireless Networks

Nam, Young-Han 19 March 2008 (has links)
No description available.
16

High-Rate And Information-Lossless Space-Time Block Codes From Crossed-Product Algebras

Shashidhar, V 04 1900 (has links)
It is well known that communication systems employing multiple transmit and multiple receive antennas provide high data rates along with increased reliability. It has been shown that coding across both spatial and temporal domains together, called Space-Time Coding (STC), achieves, a diversity order equal to the product of the number of transmit and receive antennas. Space-Time Block Codes (STBC) achieving the maximum diversity is called full-diversity STBCs. An STBC is called information-lossless, if the structure of it is such that the maximum mutual information of the resulting equivalent channel is equal to the capacity of the channel. This thesis deals with high-rate and information-lossless STBCs obtained from certain matrix algebras called Crossed-Product Algebras. First we give constructions of high-rate STBCs using both commutative and non-commutative matrix algebras obtained from appropriate representations of extensions of the field of rational numbers. In the case of commutative algebras, we restrict ourselves to fields and call the STBCs obtained from them as STBCs from field extensions. In the case of non-commutative algebras, we consider only the class of crossed-product algebras. For the case of field extensions, we first construct high-rate; full-diversity STBCs for arbitrary number of transmit antennas, over arbitrary apriori specified signal sets. Then we obtain a closed form expression for the coding gain of these STBCs and give a tight lower bound on the coding gain of some of these STBCs. This lower bound in certain cases indicates that some of the STBCs from field extensions are optimal m the sense of coding gain. We then show that the STBCs from field extensions are information-lossy. However, we also show that the finite-signal-set capacity of the STBCs from field extensions can be improved by increasing the symbol rate of the STBCs. The simulation results presented show that our high-rate STBCs perform better than the rate-1 STBCs in terms of the bit error rate performance. Then we proceed to present a construction of high-rate STBCs from crossed-product algebras. After giving a sufficient condition on the crossed-product algebras under which the resulting STBCs are information-lossless, we identify few classes of crossed-product algebras that satisfy this sufficient condition and also some classes of crossed-product algebras which are division algebras which lead to full-diversity STBCs. We present simulation results to show that the STBCs from crossed-product algebras perform better than the well-known codes m terms of the bit error rate. Finally, we introduce the notion of asymptotic-information-lossless (AILL) designs and give a necessary and sufficient condition under which a linear design is an AILL design. Analogous to the condition that a design has to be a full-rank design to achieve the point corresponding to the maximum diversity of the optimal diversity-multiplexing tradeoff, we show that a design has to be AILL to achieve the point corresponding to the maximum multiplexing gain of the optimal diversity-multiplexing tradeoff. Using the notion of AILL designs, we give a lower bound on the diversity-multiplexing tradeoff achieved by the STBCs from both field extensions and division algebras. The lower bound for STBCs obtained from division algebras indicates that they achieve the two extreme points, 1 e, zero multiplexing gain and zero diversity gain, of the optimal diversity-multiplexing tradeoff. Also, we show by simulation results that STBCs from division algebras achieves all the points on the optimal diversity-multiplexing tradeoff for n transmit and n receive antennas, where n = 2, 3, 4.
17

Diversity-Mutiplexing Tradeoff Of Asynchronous Cooperative Relay Networks And Diversity Embedded Coding Schemes

Naveen, N 07 1900 (has links)
This thesis consists of two parts addressing two different problems in fading channels. The first part deals with asynchronous cooperative relay communication. The assumption of nodes in a cooperative communication relay network operating in synchronous fashion is often unrealistic. In this work we consider two different models of asynchronous operation in cooperative-diversity networks experiencing slow fading and examine the corresponding Diversity-Multiplexing Tradeoffs (DMT). For both models, we propose protocols and distributed space-time codes that asymptotically achieve the transmit diversity bound on DMT for all multiplexing gains and for number of relays N ≥ 2. The distributed space-time codes for all the protocols considered are based on Cyclic Division Algebras (CDA). The second part of the work addresses the DMT analysis of diversity embedded codes for MIMO channels. Diversity embedded codes are high rate codes that are designed so that they have a high diversity code embedded within them. This allows a form of opportunistic communication depending on the channel conditions. The high diversity code ensures that at least a part of the information is received reliably, whereas the embedded high rate code allows additional information to be transferred if the channel is good. This can be thought of coding the data into two streams: high priority and low priority streams so that the high priority stream gets a better reliability than the lower priority stream. We show that superposition based diversity embedded codes in conjunction with naive single stream decoding is sub-optimal in terms of the DM tradeoff. We then construct explicit diversity embedded codes by the superposition of approximately universal space-time codes from CDAs. The relationship between broadcast channels and the diversity embedded setting is then utilized to provide some achievable Diversity Gain Region (DGR) for MIMO broadcast Channels.
18

Analyse et conception de code espace-temps en blocs pour transmissions MIMO codées

EL FALOU, Ammar 23 May 2013 (has links) (PDF)
Most of the modern wireless communication systems as WiMAX, DVB-NGH, WiFi, HSPA+ and 4G have adopted the use of multiple antennas at the transmitter and the receiver, called multiple-input multiple-output (MIMO). Space time coding for MIMO systems is a promising technology to increase the data rate and enhance the reliability of wireless communications. Space-time block codes (STBCs) are commonly designed according to the rank-determinant criteria suitable at high signal to noise ratios (SNRs). In contrast, wireless communication standards employ MIMO technology with capacity-approaching forward-error correcting (FEC) codes like turbo codes and low-density parity-check (LDPC) codes, ensuring low error rates even at low SNRs. In this thesis, we investigate the design of STBCs for MIMO systems with capacity-approaching FEC codes. We start by proposing a non-asymptotic STBC design criterion based on the bitwise mutual information (BMI) maximization between transmitted and soft estimated bits at a specific target SNR. According to the BMI criterion, we optimize several conventional STBCs. Their design parameters are shown to be SNR-dependent leading to the proposal of adaptive STBCs. Proposed adaptive STBCs offer identical or better performance than standard WiMAX profiles for all coding rates, without increasing the detection complexity. Among them, the proposed adaptive trace-orthonormal STBC can pass continuously from spatial multiplexing, suitable at low SNRs and therefore at low coding rates, to the Golden code, optimal at high SNRs. Uncorrelated, correlated channels and transmit antenna selection are considered. We design adaptive STBCs for these cases offering identical or better performance than conventional non-adaptive STBCs. In addition, conventional STBCs are designed in a way achieving the asymptotic DMT frontier. Recently, the finite-SNR DMT has been proposed to characterize the DMT at finite SNRs. Our last contribution consists of the derivation of the exact finite-SNR DMT for MIMO channels with dual antennas at the transmitter and/or the receiver. Both uncorrelated and correlated Rayleigh fading channels are considered. It is shown that at realistic SNRs, achievable diversity gains are significantly lower than asymptotic values. This finite-SNR could provide new insights on the design of STBCs at operational SNRs.
19

Construction Of High-Rate, Reliable Space-Time Codes

Raj Kumar, K 06 1900 (has links) (PDF)
No description available.

Page generated in 0.1064 seconds