• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hemispheric differences in preparatory attention : a divided visual field study

Fernandez, Laura Gabriela 27 September 2013 (has links) (PDF)
A crucial aspect of attentional control is the capacity of anticipating a stimulus appearance in order to improve the speed and effectiveness of its subsequent processing. Preparatory attention (PA) is the ability to modulate (enhance) the intensity of attention directed to a selected stimulus prior to its occurrence, preventing subjects from being distracted by interfering stimuli. Some studies propose that PA is lateralized to the right hemisphere (RH) while others suggest that both the left hemisphere (LH) and the RH participate in the modulation of PA. The aim of the present thesis was to examine the role of each brain hemisphere in the modulation of PA directed to a spatial location. We developed a lateralized version of the Attentional Preparatory Test, (APT, proposed par LaBerge, Auclair & Siéroff, 2000), named the Lateralized APT or LAPT. The APT measures the ability of subjects to modulate PA directed to a target location when the probability of a distractor occurrence varies across several blocks of trials. In the APT, the response times increased as the probability of a distractor appearing in the preparatory phase preceding the target presentation increased, showing that PA is modulated by the events occurring prior to the target appearance. We developed the LAPT using the divided visual field paradigm in which stimuli can occur in the left (LVF) or the right (RVF) visual fields. The visual field differences in subjects' performance are assumed to reflect differences in the processing strategies of both hemispheres (RVF/LH vs LVF/RH). In a series of studies we showed that the modulation of PA by the expected probability of events was different in each visual field/hemisphere, depending on task configuration. In the RVF/LH, PA is modulated by the expected probability of distractor events, especially when this probability is explicit. In addition, the LH seems to play a crucial role in modulating PA when the target and the distractor are hard to discriminate. In the LVF/RH, PA is modulated by the temporal probability of events and may depend on the most probable delay in which the target is expected, but only when the discrimination between the target and the distractor is easy. Most importantly, our findings suggest that the differences between RVF/LH and LVF/RH in the modulation of PA take place at the perceptual level of processing because they are independent of the hand use in executing the response, thus also independent of the processes taking place at the motor programming level. Taken together our results, they suggest that each hemisphere uses a different strategy to modulate PA when directed to a spatial location.
2

Hemispheric contributions to language: A divided visual field investigation of semantic processing following unilateral lesions

Erin Smith Unknown Date (has links)
The left hemisphere (LH) is accepted as the dominant hemisphere for language processing. There is also evidence confirming the language processing abilities of the right hemisphere (RH), particularly its lexical-semantic processing potential (Chiarello, 1988; Joanette, Goulet, & Hannequin, 1990). The capacity of the RH for language processing is significant to the investigation of language processing following LH lesions. However, the precise neurocognitive mechanisms underlying language processing following lesion remain to be fully elucidated. Subsequently, the overall aim for this thesis is to investigate hemispheric contributions to semantic processing following unilateral lesions, and to explore the significance of the contribution made by the RH. In order to achieve this overall aim, the current thesis firstly explores the hemispheric contributions made to lexical-semantic processing for healthy adults, and then shifts focus to explore the changes in hemispheric processing for participants with unilateral lesions (LH and RH). Comparisons of hemispheric activation between these groups will clarify the underlying hemispheric mechanisms that facilitate language processing following unilateral lesion. This thesis includes four complementary investigations of hemispheric contributions to semantic processing. The first study combined divided visual field (DVF) priming with event-related potentials (ERPs), in order to investigate controlled hemispheric semantic priming for young healthy adults. Two experiments were employed for a between subjects comparison of time-course differences (stimulus onset asynchrony, or SOA, varied between experiments) in hemispheric activation of associated and nonassociated category members. Continuous electroencephalograms were recorded throughout the priming task for each participant, and later analysed with reference to relevant ERP components (N400 and Late Positive Complex). Bilateral N400 priming was revealed for associated category members at both the short and long SOA. There was no significant N400 priming for the nonassociated category member condition. The examination of hemispheric priming of associated and nonassociated category member stimuli over the same time-course was continued in the second study for participants with unilateral LH lesions and matched controls. The second investigation aimed to determine the impact of unilateral LH lesions on controlled hemispheric semantic priming, utilising the DVF priming paradigm with participants following unilateral lesions. This study also aimed to explore associations between hemispheric activation during the online priming task and offline comprehension abilities. Differences in priming were observed between the LH lesion group and the control group, with participants in the LH lesion group requiring the association relationship to elicit priming. Priming also varied for participants as a function of their offline comprehension abilities, with RH priming associated with higher offline scores. The third investigation continued the exploration of hemispheric semantic activation following LH lesion, examining the impact of a LH lesion on interhemispheric control mechanisms, and the modification of hemispheric processing capacities with and without dominant hemisphere control. This investigation again utilised DVF priming with associated and nonassociated category member stimuli, in conjunction with the dual task paradigm. The dual task paradigm is designed to overload one hemisphere’s processing resources in order to remove interhemispheric suppression. Findings indicate that following LH lesions, the RH’s contribution is enhanced under conditions that are designed to overload the LH. The final study shifts from the investigation of participants with LH lesions to the impact of a RH lesion. This exploration of controlled hemispheric semantic priming following RH lesion sought to increase our understanding of the underlying mechanisms for semantic processing following unilateral lesion. The RH’s role in lexical-semantic processing has been documented consistently over approximately the last twenty years, however, there remains limited direct investigation of a RH lesion’s impact on contributions to semantic processing. A single case investigation utilised the same experimental procedure as the second study described. Findings suggest a similar activation pattern between the individual with RH lesion and the control participants, with both exhibiting bilateral activation of the associated and nonassociated category member stimuli. However, a subtle difference was found between the activation of the individual with RH lesion and that of the control group, with the individual with a RH lesion showing increased strategic processing difficulties at the longer SOA. Overall, the current thesis demonstrates the importance of the RH for efficient strategic semantic processing for both healthy adults, and people with unilateral lesions. In addition, this thesis concludes that following a LH lesion, the RH contribution to controlled semantic processing may be associated with successful comprehension, and that RH contributions may be improved with the addition of a secondary task designed to overload LH processing. The present thesis provides evidence to support the use of the DVF priming paradigm in the investigation of hemispheric contributions to semantic processing following unilateral lesion. It is anticipated that these findings will improve the current understanding of the underlying hemispheric contributions to lexical-semantics following a unilateral lesion, and will encourage continuing investigation into the RH’s capacity to impact language recovery.
3

Hemispheric contributions to language: A divided visual field investigation of semantic processing following unilateral lesions

Erin Smith Unknown Date (has links)
The left hemisphere (LH) is accepted as the dominant hemisphere for language processing. There is also evidence confirming the language processing abilities of the right hemisphere (RH), particularly its lexical-semantic processing potential (Chiarello, 1988; Joanette, Goulet, & Hannequin, 1990). The capacity of the RH for language processing is significant to the investigation of language processing following LH lesions. However, the precise neurocognitive mechanisms underlying language processing following lesion remain to be fully elucidated. Subsequently, the overall aim for this thesis is to investigate hemispheric contributions to semantic processing following unilateral lesions, and to explore the significance of the contribution made by the RH. In order to achieve this overall aim, the current thesis firstly explores the hemispheric contributions made to lexical-semantic processing for healthy adults, and then shifts focus to explore the changes in hemispheric processing for participants with unilateral lesions (LH and RH). Comparisons of hemispheric activation between these groups will clarify the underlying hemispheric mechanisms that facilitate language processing following unilateral lesion. This thesis includes four complementary investigations of hemispheric contributions to semantic processing. The first study combined divided visual field (DVF) priming with event-related potentials (ERPs), in order to investigate controlled hemispheric semantic priming for young healthy adults. Two experiments were employed for a between subjects comparison of time-course differences (stimulus onset asynchrony, or SOA, varied between experiments) in hemispheric activation of associated and nonassociated category members. Continuous electroencephalograms were recorded throughout the priming task for each participant, and later analysed with reference to relevant ERP components (N400 and Late Positive Complex). Bilateral N400 priming was revealed for associated category members at both the short and long SOA. There was no significant N400 priming for the nonassociated category member condition. The examination of hemispheric priming of associated and nonassociated category member stimuli over the same time-course was continued in the second study for participants with unilateral LH lesions and matched controls. The second investigation aimed to determine the impact of unilateral LH lesions on controlled hemispheric semantic priming, utilising the DVF priming paradigm with participants following unilateral lesions. This study also aimed to explore associations between hemispheric activation during the online priming task and offline comprehension abilities. Differences in priming were observed between the LH lesion group and the control group, with participants in the LH lesion group requiring the association relationship to elicit priming. Priming also varied for participants as a function of their offline comprehension abilities, with RH priming associated with higher offline scores. The third investigation continued the exploration of hemispheric semantic activation following LH lesion, examining the impact of a LH lesion on interhemispheric control mechanisms, and the modification of hemispheric processing capacities with and without dominant hemisphere control. This investigation again utilised DVF priming with associated and nonassociated category member stimuli, in conjunction with the dual task paradigm. The dual task paradigm is designed to overload one hemisphere’s processing resources in order to remove interhemispheric suppression. Findings indicate that following LH lesions, the RH’s contribution is enhanced under conditions that are designed to overload the LH. The final study shifts from the investigation of participants with LH lesions to the impact of a RH lesion. This exploration of controlled hemispheric semantic priming following RH lesion sought to increase our understanding of the underlying mechanisms for semantic processing following unilateral lesion. The RH’s role in lexical-semantic processing has been documented consistently over approximately the last twenty years, however, there remains limited direct investigation of a RH lesion’s impact on contributions to semantic processing. A single case investigation utilised the same experimental procedure as the second study described. Findings suggest a similar activation pattern between the individual with RH lesion and the control participants, with both exhibiting bilateral activation of the associated and nonassociated category member stimuli. However, a subtle difference was found between the activation of the individual with RH lesion and that of the control group, with the individual with a RH lesion showing increased strategic processing difficulties at the longer SOA. Overall, the current thesis demonstrates the importance of the RH for efficient strategic semantic processing for both healthy adults, and people with unilateral lesions. In addition, this thesis concludes that following a LH lesion, the RH contribution to controlled semantic processing may be associated with successful comprehension, and that RH contributions may be improved with the addition of a secondary task designed to overload LH processing. The present thesis provides evidence to support the use of the DVF priming paradigm in the investigation of hemispheric contributions to semantic processing following unilateral lesion. It is anticipated that these findings will improve the current understanding of the underlying hemispheric contributions to lexical-semantics following a unilateral lesion, and will encourage continuing investigation into the RH’s capacity to impact language recovery.
4

Hemispheric contributions to language: A divided visual field investigation of semantic processing following unilateral lesions

Erin Smith Unknown Date (has links)
The left hemisphere (LH) is accepted as the dominant hemisphere for language processing. There is also evidence confirming the language processing abilities of the right hemisphere (RH), particularly its lexical-semantic processing potential (Chiarello, 1988; Joanette, Goulet, & Hannequin, 1990). The capacity of the RH for language processing is significant to the investigation of language processing following LH lesions. However, the precise neurocognitive mechanisms underlying language processing following lesion remain to be fully elucidated. Subsequently, the overall aim for this thesis is to investigate hemispheric contributions to semantic processing following unilateral lesions, and to explore the significance of the contribution made by the RH. In order to achieve this overall aim, the current thesis firstly explores the hemispheric contributions made to lexical-semantic processing for healthy adults, and then shifts focus to explore the changes in hemispheric processing for participants with unilateral lesions (LH and RH). Comparisons of hemispheric activation between these groups will clarify the underlying hemispheric mechanisms that facilitate language processing following unilateral lesion. This thesis includes four complementary investigations of hemispheric contributions to semantic processing. The first study combined divided visual field (DVF) priming with event-related potentials (ERPs), in order to investigate controlled hemispheric semantic priming for young healthy adults. Two experiments were employed for a between subjects comparison of time-course differences (stimulus onset asynchrony, or SOA, varied between experiments) in hemispheric activation of associated and nonassociated category members. Continuous electroencephalograms were recorded throughout the priming task for each participant, and later analysed with reference to relevant ERP components (N400 and Late Positive Complex). Bilateral N400 priming was revealed for associated category members at both the short and long SOA. There was no significant N400 priming for the nonassociated category member condition. The examination of hemispheric priming of associated and nonassociated category member stimuli over the same time-course was continued in the second study for participants with unilateral LH lesions and matched controls. The second investigation aimed to determine the impact of unilateral LH lesions on controlled hemispheric semantic priming, utilising the DVF priming paradigm with participants following unilateral lesions. This study also aimed to explore associations between hemispheric activation during the online priming task and offline comprehension abilities. Differences in priming were observed between the LH lesion group and the control group, with participants in the LH lesion group requiring the association relationship to elicit priming. Priming also varied for participants as a function of their offline comprehension abilities, with RH priming associated with higher offline scores. The third investigation continued the exploration of hemispheric semantic activation following LH lesion, examining the impact of a LH lesion on interhemispheric control mechanisms, and the modification of hemispheric processing capacities with and without dominant hemisphere control. This investigation again utilised DVF priming with associated and nonassociated category member stimuli, in conjunction with the dual task paradigm. The dual task paradigm is designed to overload one hemisphere’s processing resources in order to remove interhemispheric suppression. Findings indicate that following LH lesions, the RH’s contribution is enhanced under conditions that are designed to overload the LH. The final study shifts from the investigation of participants with LH lesions to the impact of a RH lesion. This exploration of controlled hemispheric semantic priming following RH lesion sought to increase our understanding of the underlying mechanisms for semantic processing following unilateral lesion. The RH’s role in lexical-semantic processing has been documented consistently over approximately the last twenty years, however, there remains limited direct investigation of a RH lesion’s impact on contributions to semantic processing. A single case investigation utilised the same experimental procedure as the second study described. Findings suggest a similar activation pattern between the individual with RH lesion and the control participants, with both exhibiting bilateral activation of the associated and nonassociated category member stimuli. However, a subtle difference was found between the activation of the individual with RH lesion and that of the control group, with the individual with a RH lesion showing increased strategic processing difficulties at the longer SOA. Overall, the current thesis demonstrates the importance of the RH for efficient strategic semantic processing for both healthy adults, and people with unilateral lesions. In addition, this thesis concludes that following a LH lesion, the RH contribution to controlled semantic processing may be associated with successful comprehension, and that RH contributions may be improved with the addition of a secondary task designed to overload LH processing. The present thesis provides evidence to support the use of the DVF priming paradigm in the investigation of hemispheric contributions to semantic processing following unilateral lesion. It is anticipated that these findings will improve the current understanding of the underlying hemispheric contributions to lexical-semantics following a unilateral lesion, and will encourage continuing investigation into the RH’s capacity to impact language recovery.
5

L’étude du traitement des relations spatiales visuelles : approche dynamique des capacités cognitives / Study of spatial relations encoding and practice effect : a new approach to cognitive processes

Putois, Benjamin 10 July 2009 (has links)
Le modèle computo-fonctionnel de la vision de haut niveau de Kosslyn et Koenig (1992) repose sur la dissociation entre la reconnaissance et le traitement spatial de la scène visuelle. En 1987, Kosslyn postula l’existence de deux processus pour le traitement des relations spatiales : un processus catégoriel qui calcule les positions relatives des objets et un processus coordonné qui calcule la distance entre les objets. Des études utilisant le paradigme de présentation en champ visuel divisé ont mis en évidence que l’hémisphère gauche sous-tendrait un traitement catégoriel ; l’hémisphère droit sous-tendrait un traitement coordonné. Cette interaction semblerait valider la dichotomie des deux types de processus.Une revue de la littérature pluridisciplinaire a été menée afin de savoir si ce fait est suffisant pour rejeter l’hypothèse d’un processus unique pour les traitements catégoriels et coordonnés. Entre autres, plusieurs études ont observé un effet de pratique au cours de la réalisation de jugements coordonnés : une diminution de l’intervention de l’hémisphère droit au profit d’une prise en charge progressive de l’hémisphère gauche. De plus, l’avantage de l’hémisphère gauche pour le traitement catégoriel a été rarement observé.Une série de cinq expériences comportementales ont été conduites pour vérifier certains biais expérimentaux qui pourraient expliquer les différences hémisphériques et l’effet de pratique observés. Nos résultats nous ont permis d’avancer des hypothèses axées sur la communication entre les hémisphères et sur un lien entre les processus catégoriels et coordonnés. Une critique du paradigme de présentation en champ visuel divisé et différents modèles d’interaction hémisphérique ont été présentés. Trois expériences ont été menées, afin d’évaluer l’impact des communications hémisphériques dans le traitement des relations spatiales. A la lumière de nos résultats, la dichotomie des processus catégoriels et coordonnés a été discutée. / The computational-functional conception of high-level processing of vision in Kosslyn and Koenig (1992) relies on dissociation between object recognition and spatial processing. In 1987, Kosslyn postulated that two different processes compute spatial-relations: categorical process computes relative position of objects and coordinate process computes the distance between objects. Some studies indicate a left-hemisphere advantage for processing categorical spatial relations and a right-hemisphere advantage for processing coordinate spatial relations. This hemispheric difference is interpreted as an evidence of a dichotomy between these two processes. A pluridisciplinary review was conducted to assure that single process hypothesis is dismissed out. Some studies showed, in a coordinate task, that practice resulted in a decreased right-hemisphere involvement and a concurrent increase in left-hemisphere involvement (i.e., practice effect). Furthermore, the left-hemisphere advantage in categorical was seldom observed. The theoretical aim of the thesis was based on two questions: (1) Are there single or several processes encoding visual spatial relations? (2) How can we interpret this practice effect ?Five experiments were run to verify possible bias which might explain observed hemispheric differences and practice effect. Our results suggested that hemispheric communication might be an important factor in spatial-relation processing.An theoretical investigation of divided visual field paradigm was led and several interhemispheric models were described. Three experiments were conducted to estimate hemispheric communication in spatial-relation process. In the light of our results, separate categorical-coordinate processes hypothesis were discussed.
6

Étude de la dynamique hémisphérique pour le traitement des mots chez les gauchers et les droitiers

Tremblay, Tania January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
7

Étude de la dynamique hémisphérique pour le traitement des mots chez les gauchers et les droitiers

Tremblay, Tania January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
8

Hemispheric differences in preparatory attention : a divided visual field study / Différences hémisphériques de l’attention préparatoire : une étude en champ visuel divisé

Fernandez, Laura Gabriela 27 September 2013 (has links)
Un aspect fondamental du contrôle attentionnel réside dans la capacité du sujet à anticiper l’apparition d’un stimulus afin de rendre son traitement plus rapide et plus efficace. L'attention préparatoire (AP) est la capacité de moduler (rehausser) l’intensité de l’attention dirigée vers un stimulus sélectionné avant son apparition, en empêchant que le sujet soit distrait par une information non pertinente. Certaines études soutiennent que l’AP est latéralisée dans l’hémisphère droit (HD) alors que d’autres suggèrent que les deux hémisphères, l’hémisphère gauche (HG) et l’HD, sont impliqués dans la modulation de l’AP. L’objectif de cette thèse est d’analyser le rôle joué par chaque hémisphère cérébral dans la modulation de l’AP dirigée vers une localisation de l’espace. Nous avons développé une version latéralisée du test APT (pour Attentional Preparatory Test, proposé par LaBerge, Auclair & Siéroff, 2000), le LAPT (Lateralized Attentional Preparatory Test). L’APT permet de mesurer la capacité des sujets à moduler leur AP vers la localisation d’une cible lorsque la probabilité d'un distracteur varie selon plusieurs blocs d’essais. Dans l’APT, le temps de réponse augmentait lorsque la probabilité d’apparition d’un distracteur dans la phase préparatoire antérieure à la présentation de la cible augmentait, ce qui montre que l’AP est modulée par des évènements antérieurs au traitement de la cible. Nous avons créé le LAPT en utilisant la méthode de présentation en champ visuel divisé dans laquelle les stimuli peuvent apparaître dans le champ visuel gauche (CVG) ou dans le champ visuel droit (CVD). Les différences de performances entre champs visuels nous donnent des indications sur les stratégies de traitement des deux hémisphères (CVD/HG vs CVG/HD). Dans une série d’études, nous avons montré que la modulation de l’AP en fonction de la probabilité attendue d’un événement diffère dans chaque champ visuel/hémisphère en fonction de la configuration de la tâche. Dans le CVD/HG, l’AP est modulée par la probabilité des événements distracteurs, surtout quand cette probabilité est explicite. De plus, l’HG semble tenir un rôle crucial dans la modulation de l’AP quand la cible et le distracteur sont difficiles à discriminer. Dans le CVG/HD, l’AP est modulée par la probabilité temporelle des événements et dépendrait du délai le plus probable dans lequel la cible est attendue, mais seulement lorsque la discrimination entre la cible et le distracteur est plus facile. Enfin, nos résultats suggèrent que les différences entre le CVD/LH et le CVG/RH lors de cette modulation attentionnelle se mettent en place à un niveau perceptif du traitement de l’information car ils sont indépendants de la main utilisée pour répondre et donc des processus requis au niveau de la programmation motrice. L’ensemble de ces résultats suggère que chaque hémisphère utilise une stratégie différente pour moduler l’AP lorsqu’elle est dirigée vers une localisation de l’espace. / A crucial aspect of attentional control is the capacity of anticipating a stimulus appearance in order to improve the speed and effectiveness of its subsequent processing. Preparatory attention (PA) is the ability to modulate (enhance) the intensity of attention directed to a selected stimulus prior to its occurrence, preventing subjects from being distracted by interfering stimuli. Some studies propose that PA is lateralized to the right hemisphere (RH) while others suggest that both the left hemisphere (LH) and the RH participate in the modulation of PA. The aim of the present thesis was to examine the role of each brain hemisphere in the modulation of PA directed to a spatial location. We developed a lateralized version of the Attentional Preparatory Test, (APT, proposed par LaBerge, Auclair & Siéroff, 2000), named the Lateralized APT or LAPT. The APT measures the ability of subjects to modulate PA directed to a target location when the probability of a distractor occurrence varies across several blocks of trials. In the APT, the response times increased as the probability of a distractor appearing in the preparatory phase preceding the target presentation increased, showing that PA is modulated by the events occurring prior to the target appearance. We developed the LAPT using the divided visual field paradigm in which stimuli can occur in the left (LVF) or the right (RVF) visual fields. The visual field differences in subjects’ performance are assumed to reflect differences in the processing strategies of both hemispheres (RVF/LH vs LVF/RH). In a series of studies we showed that the modulation of PA by the expected probability of events was different in each visual field/hemisphere, depending on task configuration. In the RVF/LH, PA is modulated by the expected probability of distractor events, especially when this probability is explicit. In addition, the LH seems to play a crucial role in modulating PA when the target and the distractor are hard to discriminate. In the LVF/RH, PA is modulated by the temporal probability of events and may depend on the most probable delay in which the target is expected, but only when the discrimination between the target and the distractor is easy. Most importantly, our findings suggest that the differences between RVF/LH and LVF/RH in the modulation of PA take place at the perceptual level of processing because they are independent of the hand use in executing the response, thus also independent of the processes taking place at the motor programming level. Taken together our results, they suggest that each hemisphere uses a different strategy to modulate PA when directed to a spatial location.

Page generated in 0.0386 seconds