Spelling suggestions: "subject:"document understanding"" "subject:"ocument understanding""
1 |
A Visual Focus on Form UnderstandingDavis, Brian Lafayette 19 May 2022 (has links)
Paper forms are a commonly used format for collecting information, including information that ultimately will be added to a digital database. This work focuses on the automatic extraction of information from form images. It examines what can be achieved at parsing forms without any textual information. The resulting model, FUDGE, shows that computer vision alone is reasonably successful at the problem. Drawing from the strengths and weaknesses of FUDGE, this work also introduces a novel model, Dessurt, for end-to-end document understanding. Dessurt performs text recognition implicitly and is capable of outputting arbitrary text, making it a more flexible document processing model than prior methods. Dessurt is capable of parsing the entire contents of a form image into a structured format directly, achieving better performance than FUDGE at this task. Also included is a technique to generate synthetic handwriting, which provides synthetic training data for Dessurt.
|
2 |
M3D: Multimodal MultiDocument Fine-Grained Inconsistency DetectionTang, Chia-Wei 10 June 2024 (has links)
Validating claims from misinformation is a highly challenging task that involves understanding how each factual assertion within the claim relates to a set of trusted source materials. Existing approaches often make coarse-grained predictions but fail to identify the specific aspects of the claim that are troublesome and the specific evidence relied upon. In this paper, we introduce a method and new benchmark for this challenging task. Our method predicts the fine-grained logical relationship of each aspect of the claim from a set of multimodal documents, which include text, image(s), video(s), and audio(s). We also introduce a new benchmark (M^3DC) of claims requiring multimodal multidocument reasoning, which we construct using a novel claim synthesis technique. Experiments show that our approach significantly outperforms state-of-the-art baselines on this challenging task on two benchmarks while providing finer-grained predictions, explanations, and evidence. / Master of Science / In today's world, we are constantly bombarded with information from various sources, making it difficult to distinguish between what is true and what is false. Validating claims and determining their truthfulness is an essential task that helps us separate facts from fiction, but it can be a time-consuming and challenging process. Current methods often fail to pinpoint the specific parts of a claim that are problematic and the evidence used to support or refute them.
In this study, we present a new method and benchmark for fact-checking claims using multiple types of information sources, including text, images, videos, and audio. Our approach analyzes each aspect of a claim and predicts how it logically relates to the available evidence from these diverse sources. This allows us to provide more detailed and accurate assessments of the claim's validity. We also introduce a new benchmark dataset called M^3DC, which consists of claims that require reasoning across multiple sources and types of information. To create this dataset, we developed a novel technique for synthesizing claims that mimic real-world scenarios. Our experiments show that our method significantly outperforms existing state-of-the-art approaches on two benchmarks while providing more fine-grained predictions, explanations, and evidence. This research contributes to the ongoing effort to combat misinformation and fake news by providing a more comprehensive and effective approach to fact-checking claims.
|
3 |
Proposition-based summarization with a coherence-driven incremental modelFang, Yimai January 2019 (has links)
Summarization models which operate on meaning representations of documents have been neglected in the past, although they are a very promising and interesting class of methods for summarization and text understanding. In this thesis, I present one such summarizer, which uses the proposition as its meaning representation. My summarizer is an implementation of Kintsch and van Dijk's model of comprehension, which uses a tree of propositions to represent the working memory. The input document is processed incrementally in iterations. In each iteration, new propositions are connected to the tree under the principle of local coherence, and then a forgetting mechanism is applied so that only a few important propositions are retained in the tree for the next iteration. A summary can be generated using the propositions which are frequently retained. Originally, this model was only played through by hand by its inventors using human-created propositions. In this work, I turned it into a fully automatic model using current NLP technologies. First, I create propositions by obtaining and then transforming a syntactic parse. Second, I have devised algorithms to numerically evaluate alternative ways of adding a new proposition, as well as to predict necessary changes in the tree. Third, I compared different methods of modelling local coherence, including coreference resolution, distributional similarity, and lexical chains. In the first group of experiments, my summarizer realizes summary propositions by sentence extraction. These experiments show that my summarizer outperforms several state-of-the-art summarizers. The second group of experiments concerns abstractive generation from propositions, which is a collaborative project. I have investigated the option of compressing extracted sentences, but generation from propositions has been shown to provide better information packaging.
|
4 |
A Deep Understanding of Structural and Functional Behavior of Tabular and Graphical Modules in Technical DocumentsAlexiou, Michail January 2021 (has links)
No description available.
|
5 |
Exploration d'approches statistiques pour le résumé automatique de texteBoudin, Florian 05 December 2008 (has links) (PDF)
Un résumé est un texte reformulé dans un espace plus réduit. Il doit exprimer avec un minimum de mots le contenu essentiel d'un document. Son but est d'aider le lecteur à repérer les informations qui peuvent l'intéresser sans pour autant devoir lire le document en entier. Mais pourquoi avons-nous tant besoin de résumés? Simplement parce que nous ne disposons pas d'assez de temps et d'énergie pour tout lire. La masse d'information textuelle sous forme électronique ne cesse d'augmenter, que ce soit sur Internet ou dans les réseaux des entreprises. Ce volume croissant de textes disponibles rend difficile l'accès à l'information désirée sans l'aide d'outils spécifiques. Produire un résumé est une tâche très complexe car elle nécessite des connaissances linguistiques ainsi que des connaissances du monde qui restent très difficiles à incorporer dans un système automatique. Dans cette thèse de doctorat, nous explorons la problématique du résumé automatique par le biais de trois méthodes statistiques permettant chacune la production de résumés répondant à une tâche différente.<br /><br />Nous proposons une première approche pour la production de résumé dans le domaine spécialisé de la Chimie Organique. Un prototype nommé YACHS a été déve- loppé pour démontrer la viabilité de notre approche. Ce système est composé de deux modules, le premier applique un pré-traitement linguistique particulier afin de tenir compte de la spécificité des documents de Chimie Organique tandis que le second sélectionne et assemble les phrases à partir de critères statistiques dont certains sont spécifiques au domaine. Nous proposons ensuite une approche répondant à la problématique du résumé automatique multi-documents orienté par une thématique. Nous détaillons les adaptations apportées au système de résumé générique Cortex ainsi que les résultats observés sur les données des campagnes d'évaluation DUC. Les résultats obtenus par la soumission du LIA lors des participations aux campagnes d'évaluations DUC 2006 et DUC 2007 sont discutés. Nous proposons finalement deux méthodes pour la génération de résumés mis-à-jour. La première approche dite de maximisation- minimisation a été évaluée par une participation à la tâche pilote de DUC 2007. La seconde méthode est inspirée de Maximal Marginal Relevance (MMR), elle a été évaluée par plusieurs soumissions lors de la campagne TAC 2008.
|
6 |
Knowledge for Understanding Table-Form DocumentsSUGIE, Noboru, LUO, Qin, WATANABE, Toyohide 20 July 1994 (has links)
No description available.
|
7 |
Finding Relevant PDF Medical Journal Articles by the Content of Their Figures as well as Their TextChristiansen, Ammon J. 17 April 2007 (has links) (PDF)
This work addresses the need for an alternative to keyword-based search for sifting through large PDF medical journal article document collections for literature review purposes. Despite users' best efforts to form precise and accurate queries, it is often difficult to guess the right keywords to find all the related articles while finding a minimum number of unrelated ones. Failure during literature review to find relevant, related research results in wasted research time and effort in addition to missing significant work in the related area which could affect the quality of the research work being conducted. The purpose of this work is to explore the benefits of a retrieval system for professional journal articles in PDF format that supports hybrid queries composed of both text and images. PDF medical journal articles contain formatting and layout information that imply the structure and organization of the document. They also contain figures and tables rich with content and meaning. Stripping a PDF into “full-text” for indexing purposes disregards these important features. Specifically, this work investigated the following: (1) what effect the incorporation of a document's embedded figures into the query (in addition to its text) has on retrieval performance (precision) compared to plain keyword-based search; (2) how current text-based document-query similarity methods can be enhanced by using formatting and font-size information as a structure and organization model for a PDF document; (3) whether to use the standard Euclidean distance function or the matrix distance function for content-based image retrieval; (4) how to convert a PDF into a structured, formatted, reflowable XML representation given a pure-layout PDF document; (5) what document views (such as a term frequency cloud, a document outline, or a document's figures) would help users wade through search results to quickly select those that are worth a closer look. While the results of the experiments were unexpectedly worse than their baselines of comparison (see the conclusion for a summary), the experimental methods are very valuable in showing others what directions have already been pursued and why they did not work and what remaining problems need to be solved in order to achieve the goal of improving literature review through use of a hybrid text and image retrieval system.
|
8 |
Advances in Document Layout AnalysisBosch Campos, Vicente 05 March 2020 (has links)
[EN] Handwritten Text Segmentation (HTS) is a task within the Document Layout Analysis field that aims to detect and extract the different page regions of interest found in handwritten documents. HTS remains an active topic, that has gained importance with the years, due to the increasing demand to provide textual access to the myriads of handwritten document collections held by archives and libraries.
This thesis considers HTS as a task that must be tackled in two specialized phases: detection and extraction. We see the detection phase fundamentally as a recognition problem that yields the vertical positions of each region of interest as a by-product. The extraction phase consists in calculating the best contour coordinates of the region using the position information provided by the detection phase.
Our proposed detection approach allows us to attack both higher level regions: paragraphs, diagrams, etc., and lower level regions like text lines. In the case of text line detection we model the problem to ensure that the system's yielded vertical position approximates the fictitious line that connects the lower part of the grapheme bodies in a text line, commonly known as the
baseline.
One of the main contributions of this thesis, is that the proposed modelling approach allows us to include prior information regarding the layout of the documents being processed. This is performed via a Vertical Layout Model (VLM).
We develop a Hidden Markov Model (HMM) based framework to tackle both region detection and classification as an integrated task and study the performance and ease of use of the proposed approach in many corpora. We review the modelling simplicity of our approach to process regions at different levels of information: text lines, paragraphs, titles, etc. We study the impact of adding deterministic and/or probabilistic prior information and restrictions via the VLM that our approach provides.
Having a separate phase that accurately yields the detection position (base- lines in the case of text lines) of each region greatly simplifies the problem that must be tackled during the extraction phase. In this thesis we propose to use a distance map that takes into consideration the grey-scale information in the image. This allows us to yield extraction frontiers which are equidistant to the adjacent text regions. We study how our approach escalates its accuracy proportionally to the quality of the provided detection vertical position. Our extraction approach gives near perfect results when human reviewed baselines are provided. / [ES] La Segmentación de Texto Manuscrito (STM) es una tarea dentro del campo de investigación de Análisis de Estructura de Documentos (AED) que tiene como objetivo detectar y extraer las diferentes regiones de interés de las páginas que se encuentran en documentos manuscritos. La STM es un tema de investigación activo que ha ganado importancia con los años debido a la creciente demanda de proporcionar acceso textual a las miles de colecciones de documentos manuscritos que se conservan en archivos y bibliotecas.
Esta tesis entiende la STM como una tarea que debe ser abordada en dos fases especializadas: detección y extracción. Consideramos que la fase de detección es, fundamentalmente, un problema de clasificación cuyo subproducto son las posiciones verticales de cada región de interés. Por su parte, la fase de extracción consiste en calcular las mejores coordenadas de contorno de la región utilizando la información de posición proporcionada por la fase de detección.
Nuestro enfoque de detección nos permite atacar tanto regiones de alto nivel (párrafos, diagramas¿) como regiones de nivel bajo (líneas de texto principalmente). En el caso de la detección de líneas de texto, modelamos el problema para asegurar que la posición vertical estimada por el sistema se aproxime a la línea ficticia que conecta la parte inferior de los cuerpos de los grafemas en una línea de texto, comúnmente conocida como línea base. Una de las principales aportaciones de esta tesis es que el enfoque de modelización propuesto nos permite incluir información conocida a priori sobre la disposición de los documentos que se están procesando. Esto se realiza mediante un Modelo de Estructura Vertical (MEV).
Desarrollamos un marco de trabajo basado en los Modelos Ocultos de Markov (MOM) para abordar tanto la detección de regiones como su clasificación de forma integrada, así como para estudiar el rendimiento y la facilidad de uso del enfoque propuesto en numerosos corpus. Así mismo, revisamos la simplicidad del modelado de nuestro enfoque para procesar regiones en diferentes niveles de información: líneas de texto, párrafos, títulos, etc. Finalmente, estudiamos el impacto de añadir información y restricciones previas deterministas o probabilistas a través de el MEV propuesto que nuestro enfoque proporciona.
Disponer de un método independiente que obtiene con precisión la posición de cada región detectada (líneas base en el caso de las líneas de texto) simplifica enormemente el problema que debe abordarse durante la fase de extracción. En esta tesis proponemos utilizar un mapa de distancias que tiene en cuenta la información de escala de grises de la imagen. Esto nos permite obtener fronteras de extracción que son equidistantes a las regiones de texto adyacentes. Estudiamos como nuestro enfoque aumenta su precisión de manera proporcional a la calidad de la detección y descubrimos que da resultados casi perfectos cuando se le proporcionan líneas de base revisadas por
humanos. / [CA] La Segmentació de Text Manuscrit (STM) és una tasca dins del camp d'investigació d'Anàlisi d'Estructura de Documents (AED) que té com a objectiu detectar I extraure les diferents regions d'interès de les pàgines que es troben en documents manuscrits. La STM és un tema d'investigació actiu que ha guanyat importància amb els anys a causa de la creixent demanda per proporcionar accés textual als milers de col·leccions de documents manuscrits que es conserven en arxius i biblioteques.
Aquesta tesi entén la STM com una tasca que ha de ser abordada en dues fases especialitzades: detecció i extracció. Considerem que la fase de detecció és, fonamentalment, un problema de classificació el subproducte de la qual són les posicions verticals de cada regió d'interès. Per la seva part, la fase d'extracció consisteix a calcular les millors coordenades de contorn de la regió utilitzant la informació de posició proporcionada per la fase de detecció.
El nostre enfocament de detecció ens permet atacar tant regions d'alt nivell (paràgrafs, diagrames ...) com regions de nivell baix (línies de text principalment). En el cas de la detecció de línies de text, modelem el problema per a assegurar que la posició vertical estimada pel sistema s'aproximi a la línia fictícia que connecta la part inferior dels cossos dels grafemes en una línia de
text, comunament coneguda com a línia base.
Una de les principals aportacions d'aquesta tesi és que l'enfocament de modelització proposat ens permet incloure informació coneguda a priori sobre la disposició dels documents que s'estan processant. Això es realitza mitjançant un Model d'Estructura Vertical (MEV).
Desenvolupem un marc de treball basat en els Models Ocults de Markov (MOM) per a abordar tant la detecció de regions com la seva classificació de forma integrada, així com per a estudiar el rendiment i la facilitat d'ús de l'enfocament proposat en nombrosos corpus. Així mateix, revisem la simplicitat del modelatge del nostre enfocament per a processar regions en diferents nivells d'informació: línies de text, paràgrafs, títols, etc. Finalment, estudiem l'impacte d'afegir informació i restriccions prèvies deterministes o probabilistes a través del MEV que el nostre mètode proporciona.
Disposar d'un mètode independent que obté amb precisió la posició de cada regió detectada (línies base en el cas de les línies de text) simplifica enormement el problema que ha d'abordar-se durant la fase d'extracció. En aquesta tesi proposem utilitzar un mapa de distàncies que té en compte la informació d'escala de grisos de la imatge. Això ens permet obtenir fronteres d'extracció que són equidistants de les regions de text adjacents. Estudiem com el nostre enfocament augmenta la seva precisió de manera proporcional a la qualitat de la detecció i descobrim que dona resultats quasi perfectes quan se li proporcionen línies de base revisades per humans. / Bosch Campos, V. (2020). Advances in Document Layout Analysis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138397
|
9 |
Résumé automatique de parole pour un accès efficace aux bases de données audioFavre, Benoit 19 March 2007 (has links) (PDF)
L'avènement du numérique permet de stocker de grandes quantités de parole à moindre coût. Malgré les récentes avancées en recherche documentaire audio, il reste difficile d'exploiter les documents à cause du temps nécessaire pour les écouter. Nous tentons d'atténuer cet inconvénient en produisant un résumé automatique parlé à partir des informations les plus importantes. Pour y parvenir, une méthode de résumé par extraction est appliquée au contenu parlé, transcrit et structuré automatiquement. La transcription enrichie est réalisée grâce aux outils Speeral et Alize développés au LIA. Nous complétons cette chaîne de structuration par une segmentation en phrases et une détection des entités nommées, deux caractéristiques importantes pour le résumé par extraction. La méthode de résumé proposée prend en compte les contraintes imposées par des données audio et par des interactions avec l'utilisateur. De plus, cette méthode intègre une projection dans un espace pseudo-sémantique des phrases. Les différents modules mis en place aboutissent à un démonstrateur complet facilitant l'étude des interactions avec l'utilisateur. En l'absence de données d'évaluation sur la parole, la méthode de résumé est évaluée sur le texte lors de la campagne DUC 2006. Nous simulons l'impact d'un contenu parlé en dégradant artificiellement les données de cette même campagne. Enfin, l'ensemble de la chaîne de traitement est mise en œuvre au sein d'un démonstrateur facilitant l'accès aux émissions radiophoniques de la campagne ESTER. Nous proposons, dans le cadre de ce démonstrateur, une frise chronologique interactive complémentaire au résumé parlé.
|
10 |
Layout Analysis for Handwritten Documents. A Probabilistic Machine Learning ApproachQuirós Díaz, Lorenzo 21 March 2022 (has links)
[ES] El Análisis de la Estructura de Documentos (Document Layout Analysis), aplicado a documentos manuscritos, tiene como objetivo obtener automáticamente la estructura intrínseca de dichos documentos. Su desarrollo como campo de investigación se extiende desde los sistemas de segmentación de caracteres desarrollados a principios de la década de 1960 hasta los sistemas complejos desarrollados en la actualidad, donde el objetivo es analizar estructuras de alto nivel (líneas de texto, párrafos, tablas, etc.) y la relación que existe entre ellas.
Esta tesis, en primer lugar, define el objetivo del Análisis de la Estructura de Documentos desde una perspectiva probabilística. A continuación, la complejidad del problema se reduce a un conjunto de subproblemas complementarios bien conocidos, de manera que pueda ser gestionado por medio de recursos informáticos modernos. Concretamente se abordan tres de los principales problemas del Análisis de la Estructura de Documentos siguiendo una formulación probabilística. Específicamente se aborda la Detección de Línea Base (Baseline Detection), la Segmentación de Regiones (Region Segmentation) y la Determinación del Orden de Lectura (Reading Order Determination).
Uno de los principales aportes de esta tesis es la formalización de los problemas de Detección de Línea Base y Segmentación de Regiones bajo un marco probabilístico, donde ambos problemas pueden ser abordados por separado o de forma integrada por los modelos propuestos. Este último enfoque ha demostrado ser muy útil para procesar grandes colecciones de documentos con recursos informáticos limitados.
Posteriormente se aborda el subproblema de la Determinación del Orden de Lectura, que es uno de los subproblemas más importantes, aunque subestimados, del Análisis de la Extructura de Documentos, ya que es el nexo que permite convertir los datos extraídos de los sistemas de Reconocimiento Automático de Texto (Automatic Text Recognition Systems) en información útil. Por lo tanto, en esta tesis abordamos y formalizamos la Determinación del Orden de Lectura como un problema de clasificación probabilística por pares. Además, se proponen dos diferentes algoritmos de decodificación que reducen la complejidad computacional del problema.
Por otra parte, se utilizan diferentes modelos estadísticos para representar la distribución de probabilidad sobre la estructura de los documentos. Estos modelos, basados en Redes Neuronales Artificiales (desde un simple Perceptrón Multicapa hasta complejas Redes Convolucionales y Redes de Propuesta de Regiones), se estiman a partir de datos de entrenamiento utilizando algoritmos de aprendizaje automático supervisados.
Finalmente, todas las contribuciones se evalúan experimentalmente, no solo en referencias académicas estándar, sino también en colecciones de miles de imágenes. Se han considerado documentos de texto manuascritos y documentos musicales manuscritos, ya que en conjunto representan la mayoría de los documentos presentes en bibliotecas y archivos. Los resultados muestran que los métodos propuestos son muy precisos y versátiles en una amplia gama de documentos manuscritos. / [CA] L'Anàlisi de l'Estructura de Documents (Document Layout Analysis), aplicada a documents manuscrits, pretén automatitzar l'obtenció de l'estructura intrínseca d'un document. El seu desenvolupament com a camp d'investigació comprén des dels sistemes de segmentació de caràcters creats al principi dels anys 60 fins als complexos sistemes de hui dia que busquen analitzar estructures d'alt nivell (línies de text, paràgrafs, taules, etc) i les relacions entre elles.
Aquesta tesi busca, primer de tot, definir el propòsit de l'anàlisi de l'estructura de documents des d'una perspectiva probabilística. Llavors, una vegada reduïda la complexitat del problema, es processa utilitzant recursos computacionals moderns, per a dividir-ho en un conjunt de subproblemes complementaris més coneguts. Concretament, tres dels principals subproblemes de l'Anàlisi de l'Estructura de Documents s'adrecen seguint una formulació probabilística: Detecció de la Línia Base Baseline Detection), Segmentació de Regions (Region Segmentation) i Determinació de l'Ordre de Lectura (Reading Order Determination).
Una de les principals contribucions d'aquesta tesi és la formalització dels problemes de la Detecció de les Línies Base i dels de Segmentació de Regions en un entorn probabilístic, sent els dos problemes tractats per separat o integrats en conjunt pels models proposats. Aquesta última aproximació ha demostrat ser de molta utilitat per a la gestió de grans col·leccions de documents amb uns recursos computacionals limitats.
Posteriorment s'ha adreçat el subproblema de la Determinació de l'Ordre de Lectura, sent un dels subproblemes més importants de l'Anàlisi d'Estructures de Documents, encara així subestimat, perquè és el nexe que permet transformar en informació d'utilitat l'extracció de dades dels sistemes de reconeixement automàtic de text. És per això que el fet de determinar l'ordre de lectura s'adreça i formalitza com un problema d'ordenació probabilística per parells. A més, es proposen dos algoritmes descodificadors diferents que reducix la complexitat computacional del
problema.
Per altra banda s'utilitzen diferents models estadístics per representar la distribució probabilística sobre l'estructura dels documents. Aquests models, basats en xarxes neuronals artificials (des d'un simple perceptron multicapa fins a complexes xarxes convolucionals i de propostes de regió), s'estimen a partir de dades d'entrenament mitjançant algoritmes d'aprenentatge automàtic supervisats.
Finalment, totes les contribucions s'avaluen experimentalment, no només en referents acadèmics estàndard, sinó també en col·leccions de milers d'imatges. S'han considerat documents de text manuscrit i documents musicals manuscrits, ja que representen la majoria de documents presents a biblioteques i arxius. Els resultats mostren que els mètodes proposats són molt precisos i versàtils en una àmplia gamma de documents manuscrits. / [EN] Document Layout Analysis, applied to handwritten documents, aims to automatically obtain the intrinsic structure of a document. Its development as a research field spans from the character segmentation systems developed in the early 1960s to the complex systems designed nowadays, where the goal is to analyze high-level structures (lines of text, paragraphs, tables, etc) and the relationship between them.
This thesis first defines the goal of Document Layout Analysis from a probabilistic perspective. Then, the complexity of the problem is reduced, to be handled by modern computing resources, into a set of well-known complementary subproblems. More precisely, three of the main subproblems of Document Layout Analysis are addressed following a probabilistic formulation, namely Baseline Detection, Region Segmentation and Reading Order Determination.
One of the main contributions of this thesis is the formalization of Baseline Detection and Region Segmentation problems under a probabilistic framework, where both problems can be handled separately or in an integrated way by the proposed models. The latter approach is proven to be very useful to handle large document collections under restricted computing resources.
Later, the Reading Order Determination subproblem is addressed. It is one of the most important, yet underestimated, subproblem of Document Layout Analysis, since it is the bridge that allows us to convert the data extracted from Automatic Text Recognition systems into useful information. Therefore, Reading Order Determination is addressed and formalized as a pairwise probabilistic sorting problem. Moreover, we propose two different decoding algorithms that reduce the computational complexity of the problem.
Furthermore, different statistical models are used to represent the probability distribution over the structure of the documents. These models, based on Artificial Neural Networks (from a simple Multilayer Perceptron to complex Convolutional and Region Proposal Networks), are estimated from training data using supervised Machine Learning algorithms.
Finally, all the contributions are experimentally evaluated, not only on standard academic benchmarks but also in collections of thousands of images. We consider handwritten text documents and handwritten musical documents as they represent the majority of documents in libraries and archives. The results show that the proposed methods are very accurate and versatile in a very wide range of handwritten documents. / Quirós Díaz, L. (2022). Layout Analysis for Handwritten Documents. A Probabilistic Machine Learning Approach [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181483
|
Page generated in 0.1513 seconds