Spelling suggestions: "subject:"domínio exterior"" "subject:"cdomínio exterior""
1 |
Resultados de existência de solução para problemas elípticos no espaço das funções de variação limitada / Existence of solution for elliptic problems in the space of bounded variation functionsSilva, Letícia dos Santos [UNESP] 15 February 2018 (has links)
Submitted by Letícia dos Santos Silva null (leticiadstos@gmail.com) on 2018-03-04T13:10:40Z
No. of bitstreams: 1
leticia_dissertacao.pdf: 941545 bytes, checksum: 75b9baf79f051810ab82bd9bb946dd83 (MD5) / Approved for entry into archive by Claudia Adriana Spindola null (claudia@fct.unesp.br) on 2018-03-05T11:45:13Z (GMT) No. of bitstreams: 1
silva_ls_me_prud.pdf: 941545 bytes, checksum: 75b9baf79f051810ab82bd9bb946dd83 (MD5) / Made available in DSpace on 2018-03-05T11:45:13Z (GMT). No. of bitstreams: 1
silva_ls_me_prud.pdf: 941545 bytes, checksum: 75b9baf79f051810ab82bd9bb946dd83 (MD5)
Previous issue date: 2018-02-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho mostra-se a existência de solução de variação limitada para um problema envolvendo o operador 1− Laplaciano em um domínio exterior com condição de fronteira de Dirichlet. Para isso, será usada uma versão do Teorema do Passo da Montanha adequada a funcionais localmente lipschitzianos. As dificuldades na implementação de métodos variacionais no espaço das funções de variação limitada são múltiplas, entre elas, a falta de reflexividade, dificuldade de se usar condições de compacidade como a de Palais-Smale e ainda a falta de regularidade do funcional energia. / In this work we prove existence of bounded variation solution for a problem involving the 1-Laplacian operator in an exterior domain with Dirichlet boundary condition. For this, a version of the Mountain Pass Theorem to locally Lipschitz functionals is used. There are many difficulties in implementing variational methods in the space of limited variation functions, among them, lack of reflexivity, difficulty in using compactness conditions such as Palais-Smale and the lack of regularity of the functional energy.
|
Page generated in 0.0422 seconds