• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A mean-field game model of economic growth : an essay in regularity theory

Lima, Lucas Fabiano 20 December 2016 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-06-27T20:42:50Z No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:46Z (GMT) No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:52Z (GMT) No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) / Made available in DSpace on 2017-07-03T18:01:59Z (GMT). No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) Previous issue date: 2016-12-20 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / In this thesis, we present a priori estimates for solutions of a mean-field game (MFG) defined over a bounded domain Ω ⊂ ℝd. We propose an application of these results to a model of capital and wealth accumulation. In Chapter 1, an introduction to mean-field games is presented. We also put forward some of the motivation from Economics and discuss previous developments in the theory of differential games. These comments aim at indicating the connection between mean-field games theory, its applications and the realm of Mathematical Analysis. In Chapter 2, we present an optimal control problem. Here, the agents are supposed to be undistinguishable, rational and intelligent. Undistinguishable means that every agent is governed by the same stochastic differential equation. Rational means that all efforts of the agent is to maximize a payoff functional. Intelligent means that they are able to solve an optimal control problem. Once we describe this (stochastic) optimal control problem, we produce a heuristic derivation of the mean-field games system, which is summarized in a Verification Theorem; this gives rise to the Hamilton-Jacobi equation (HJ). After that, we obtain the Fokker-Plank equation (FP). Finally, we present a representation formula for the solutions to the (HJ) equation, together with some regularity results. In Chapter 3, a specific optimal control problem is described and the associated MFG is presented. This MFG is prescribed in a bounded domain Ω ⊂ ℝd, which introduces substantialadditional challenges from the mathematical view point. This is due to estimates for the solutionsat the boundary in Lp. The rest of the chapter puts forward two well known tips of estimates: theso-called Hopf-Lax formula and the First Order Estimate. In Chapter 4, the wealth and capital accumulation mean-field game model is presented. The relevance of studying MFG in a bounded domain then becomes clear. In light of the results obtained in Chapter 3, we close Chapter 4 with the Hopf-Lax formula, and the First Order estimates. Three appendices close this thesis. They gather elementary material on Stochastic Calculus and Functional Analysis. / Nesta dissertação são apresentadas algumas estimativas a priori para soluções de sistemas mean-field games (MFG), definidos em domínios limitados Ω ⊂ ℝd. Tais estimativas são aplicadas em um modelo mean-field específico, que descreve o acúmulo de riqueza e capital. No Capítulo 1, é apresentada uma breve introdução histórica sobre os mean-field games. Nesta introdução, exploramos sua relação com a teoria dos jogos, cujos alicerces foram construídos por economistas e matemáticos ao longo do século XX. O objetivo do capítulo é transmitir. No Capítulo 2, apresentamos um problema de controle ótimo em que cada agente é suposto ser indistinguível, racional e inteligente. Indistinguível no sentido de que cada um é governado pela mesma equação diferencial estocástica. Racional no sentido de que todos os esforços do agente são no sentido de maximizar um funcional de recompensa e, inteligente no sentido de que são capazes de resolver um problema de controle ótimo. Descreve-se este problema de controle ótimo, e apresenta-se a derivação heurística dos mean-field games; obtém-se através de um Teorema de Verificação, a equação de Hamilton-Jacobi (HJ) associada, e em seguida, obtémse a equação de Fokker-Planck. De posse destas equações, apresentamos alguns resultados preliminares, como uma fórmula de representação para soluções da equação de HJ e alguns resultados de regularidade. No Capítulo 3, descreve-se um problema específico de controle ótimo e apresenta-se a respectiva derivação heurística culminando na descrição de um MFG com condições não periódicas na fronteira; esta abordagem é original na literatura de MFG. O restante do capítulo é dedicado à exposição de dois tipos bem conhecidos de estimativas: a fórmula de Hopf-Lax e estimativa de Primeira Ordem. Uma observação relevante, é a de que o trabalho em obter-se estimativas a priori é aumentado substancialmente neste caso, devido ao fato de lidarmos com estimativas para os termos de fronteira com normas em Lp. ao leitor, as origens da Teoria Econômica contemporânea, que surgem à partir da utilização da Matemática na formulação e resolução de problemas econômicos. Tal abordagem é motivada principalmente pelo rigor e clareza da Matemática em tais circunstâncias. No Capítulo 4, apresenta-se o modelo de jogo do tipo mean-field de acúmulo de capital e riqueza, o que deixa claro a relevância do estudo dos MFG em um domínio limitado. À luz dos resultados obtidos no Capítulo 3, encerramos o Capítulo 4 com as estimativas do tipo Hopf-Lax e de Primeira Ordem. Três apêndices encerram o texto desta dissertação de mestrado; estes reúnem material elementar sobre Cálculo Estocástico e Análise Funcional.

Page generated in 0.05 seconds