Spelling suggestions: "subject:"equação dde Hamilton-Jacobi"" "subject:"equação dee Hamilton-Jacobi""
1 |
Soluções de viscosidade estacionárias da equação de Hamilton-JacobiAlmeida, Tadeu Zavistanovicz de January 2010 (has links)
Neste trabalho estudamos soluções de viscosidade estacionárias da Equação de Hamilton-Jacobi, suas propriedades, e indicamos sua conexão com o problema de Mather estacionário. Para tal, estabelecemos alguns conceitos como a acho estacionaria, funções estacionarias, Lagrangianos e Hamiltonianos estacionários, etc. No final deste trabalho utilizamos o Principio da Programação Dinâmica para provar a existência de solução de viscosidade estacionaria da Equação de Hamilton-Jacobi com desconto. / In this work we study stationary viscosity solutions of the Hamilton-Jacobi Equation, its properties, and we indicate its conexion with the Mather problem in the stationary setting. In order to do this, we establish some concepts like the stationary action, stationary functions, stationary Lagrangians and Hamiltonians, etc. In the ending of this work we use the Dynamic Programming Principle to establish the existence of stationary viscosity solution of the discounted Hamilton-Jacobi Equation.
|
2 |
Soluções de viscosidade estacionárias da equação de Hamilton-JacobiAlmeida, Tadeu Zavistanovicz de January 2010 (has links)
Neste trabalho estudamos soluções de viscosidade estacionárias da Equação de Hamilton-Jacobi, suas propriedades, e indicamos sua conexão com o problema de Mather estacionário. Para tal, estabelecemos alguns conceitos como a acho estacionaria, funções estacionarias, Lagrangianos e Hamiltonianos estacionários, etc. No final deste trabalho utilizamos o Principio da Programação Dinâmica para provar a existência de solução de viscosidade estacionaria da Equação de Hamilton-Jacobi com desconto. / In this work we study stationary viscosity solutions of the Hamilton-Jacobi Equation, its properties, and we indicate its conexion with the Mather problem in the stationary setting. In order to do this, we establish some concepts like the stationary action, stationary functions, stationary Lagrangians and Hamiltonians, etc. In the ending of this work we use the Dynamic Programming Principle to establish the existence of stationary viscosity solution of the discounted Hamilton-Jacobi Equation.
|
3 |
Soluções de viscosidade estacionárias da equação de Hamilton-JacobiAlmeida, Tadeu Zavistanovicz de January 2010 (has links)
Neste trabalho estudamos soluções de viscosidade estacionárias da Equação de Hamilton-Jacobi, suas propriedades, e indicamos sua conexão com o problema de Mather estacionário. Para tal, estabelecemos alguns conceitos como a acho estacionaria, funções estacionarias, Lagrangianos e Hamiltonianos estacionários, etc. No final deste trabalho utilizamos o Principio da Programação Dinâmica para provar a existência de solução de viscosidade estacionaria da Equação de Hamilton-Jacobi com desconto. / In this work we study stationary viscosity solutions of the Hamilton-Jacobi Equation, its properties, and we indicate its conexion with the Mather problem in the stationary setting. In order to do this, we establish some concepts like the stationary action, stationary functions, stationary Lagrangians and Hamiltonians, etc. In the ending of this work we use the Dynamic Programming Principle to establish the existence of stationary viscosity solution of the discounted Hamilton-Jacobi Equation.
|
4 |
Otimização estocástica de portfólioPereira, Yuri Marques Medeiros 05 August 2016 (has links)
Submitted by Yuri Pereira (yurimedeiros_@hotmail.com) on 2016-09-01T15:24:06Z
No. of bitstreams: 1
Dissertação YURI PEREIRA.pdf: 507288 bytes, checksum: b86dbb4b5f173ac7d43a83d591ab6a7b (MD5) / Approved for entry into archive by Renata de Souza Nascimento (renata.souza@fgv.br) on 2016-09-01T19:29:40Z (GMT) No. of bitstreams: 1
Dissertação YURI PEREIRA.pdf: 507288 bytes, checksum: b86dbb4b5f173ac7d43a83d591ab6a7b (MD5) / Made available in DSpace on 2016-09-01T19:33:44Z (GMT). No. of bitstreams: 1
Dissertação YURI PEREIRA.pdf: 507288 bytes, checksum: b86dbb4b5f173ac7d43a83d591ab6a7b (MD5)
Previous issue date: 2016-08-05 / In Øksendal (1998), we can see the derivation of a classical stochastic optimization between an asset, or a class of assets, risky and other risk-free. But, after the decision of which portion of the resources to allocate in the risky investment class, questions arise about how would the division of the resources between the assets that comprise it. We assume that some investor choose to invest in two risky assets and, following the classic studies of portfolio stochastic optimization, mainly by Øksendal, the proposal is to introduce a new technique of trading consisting in recurrent rebalancing approach stochastic optimization investments with risk. Following the short-term concept provided by Ang, Hodrick, Xing and Zhang (2006) for the stock market, it was considered a sequence of short rebalancing time horizons and, at the beginning of each period, the parameters are recalculated and a new optimal control is established. By adopting this technique, the volatilities of the assets constituting the portfolio are recalculated and, therefore, it is a proxy to solution of the heteroscedasticity problem. Also noteworthy, being something new in literature, the fact of having been derived from an optimal control for a portfolio containing two investments with risk. The stochastic optimization procedure was similar to that adopted by Øksendal, namely, the application of the Hamilton-Jacobi-Bellman theorem to transform the problem of minimizing the cost functional a partial differential equation known as HJB equation, in reference to the authors. The steps followed by Øksenal are the same for us, from the optimization’s point of view, and are well summarized by Ross (2008). / Em Øksendal (1998), podemos ver a derivação de um modelo clássico de otimização estocástica entre um ativo, ou classe de ativos, com risco e outro sem risco. Mas, após a decisão do quanto alocar na classe de investimento com risco, ficou o questionamento sobre como ficaria a divisão dos recursos entre os ativos que a compõem. Partimos do princípio que determinado investidor optou por escolher investir em dois ativos com risco e, seguindo os estudos clássicos de otimização estocástica de portfólio, principalmente o promovido por Øksendal, a proposta é apresentar uma nova técnica de trading que consiste na abordagem de rebalanceamentos sucessivos por otimização estocástica em investimentos com risco. Seguindo a noção de curto prazo fornecida por Ang, Hodrick, Xing e Zhang (2006) para o mercado de ações, foi considerada uma sequência de horizontes curtos de rebalanceamento e, ao início de cada período, os parâmetros são recalculados e um novo controle ótimo é estabelecido. Ao adotar esta técnica, as volatilidades dos ativos que constituem o portfólio são recalculadas e, com isso, diminui-se o problema de heterocedasticidade. Também merece destaque, por ser algo novo na literatura, o fato de ter sido derivado um controle ótimo para um portfólio que contém dois investimentos com risco. O procedimento de otimização estocástica foi similar ao adotado por Øksendal, qual seja, a aplicação do teorema de Hamilton-Jacobi-Bellman para transformar o problema de minimização da funcional custo numa equação diferencial parcial conhecida como equação HJB, em referência aos autores. Os passos seguidos por Øksenal e por nós serão os mesmos, do ponto de vista de otimização, e estão bem resumidos por Ross (2008).
|
5 |
A mean-field game model of economic growth : an essay in regularity theoryLima, Lucas Fabiano 20 December 2016 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-06-27T20:42:50Z
No. of bitstreams: 1
DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:46Z (GMT) No. of bitstreams: 1
DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:52Z (GMT) No. of bitstreams: 1
DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) / Made available in DSpace on 2017-07-03T18:01:59Z (GMT). No. of bitstreams: 1
DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5)
Previous issue date: 2016-12-20 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / In this thesis, we present a priori estimates for solutions of a mean-field game (MFG) defined
over a bounded domain Ω ⊂ ℝd. We propose an application of these results to a model of capital
and wealth accumulation.
In Chapter 1, an introduction to mean-field games is presented. We also put forward some of
the motivation from Economics and discuss previous developments in the theory of differential
games. These comments aim at indicating the connection between mean-field games theory, its
applications and the realm of Mathematical Analysis.
In Chapter 2, we present an optimal control problem. Here, the agents are supposed to be
undistinguishable, rational and intelligent. Undistinguishable means that every agent is governed
by the same stochastic differential equation. Rational means that all efforts of the agent is to
maximize a payoff functional. Intelligent means that they are able to solve an optimal control
problem. Once we describe this (stochastic) optimal control problem, we produce a heuristic
derivation of the mean-field games system, which is summarized in a Verification Theorem; this
gives rise to the Hamilton-Jacobi equation (HJ). After that, we obtain the Fokker-Plank equation
(FP). Finally, we present a representation formula for the solutions to the (HJ) equation, together
with some regularity results.
In Chapter 3, a specific optimal control problem is described and the associated MFG is
presented. This MFG is prescribed in a bounded domain
Ω ⊂ ℝd, which introduces substantialadditional challenges from the mathematical view point. This is due to estimates for the solutionsat the boundary in Lp. The rest of the chapter puts forward two well known tips of estimates: theso-called Hopf-Lax formula and the First Order Estimate.
In Chapter 4, the wealth and capital accumulation mean-field game model is presented. The
relevance of studying MFG in a bounded domain then becomes clear. In light of the results obtained
in Chapter 3, we close Chapter 4 with the Hopf-Lax formula, and the First Order estimates.
Three appendices close this thesis. They gather elementary material on Stochastic Calculus
and Functional Analysis. / Nesta dissertação são apresentadas algumas estimativas a priori para soluções de sistemas
mean-field games (MFG), definidos em domínios limitados Ω ⊂ ℝd. Tais estimativas são aplicadas
em um modelo mean-field específico, que descreve o acúmulo de riqueza e capital.
No Capítulo 1, é apresentada uma breve introdução histórica sobre os mean-field games.
Nesta introdução, exploramos sua relação com a teoria dos jogos, cujos alicerces foram construídos
por economistas e matemáticos ao longo do século XX. O objetivo do capítulo é transmitir.
No Capítulo 2, apresentamos um problema de controle ótimo em que cada agente é suposto
ser indistinguível, racional e inteligente. Indistinguível no sentido de que cada um é governado
pela mesma equação diferencial estocástica. Racional no sentido de que todos os esforços do
agente são no sentido de maximizar um funcional de recompensa e, inteligente no sentido de que
são capazes de resolver um problema de controle ótimo. Descreve-se este problema de controle
ótimo, e apresenta-se a derivação heurística dos mean-field games; obtém-se através de um
Teorema de Verificação, a equação de Hamilton-Jacobi (HJ) associada, e em seguida, obtémse
a equação de Fokker-Planck. De posse destas equações, apresentamos alguns resultados
preliminares, como uma fórmula de representação para soluções da equação de HJ e alguns
resultados de regularidade.
No Capítulo 3, descreve-se um problema específico de controle ótimo e apresenta-se a respectiva
derivação heurística culminando na descrição de um MFG com condições não periódicas
na fronteira; esta abordagem é original na literatura de MFG. O restante do capítulo é
dedicado à exposição de dois tipos bem conhecidos de estimativas: a fórmula de Hopf-Lax e
estimativa de Primeira Ordem. Uma observação relevante, é a de que o trabalho em obter-se
estimativas a priori é aumentado substancialmente neste caso, devido ao fato de lidarmos com
estimativas para os termos de fronteira com normas em Lp.
ao leitor, as origens da Teoria Econômica contemporânea, que surgem à partir da utilização da
Matemática na formulação e resolução de problemas econômicos. Tal abordagem é motivada
principalmente pelo rigor e clareza da Matemática em tais circunstâncias.
No Capítulo 4, apresenta-se o modelo de jogo do tipo mean-field de acúmulo de capital e
riqueza, o que deixa claro a relevância do estudo dos MFG em um domínio limitado. À luz dos
resultados obtidos no Capítulo 3, encerramos o Capítulo 4 com as estimativas do tipo Hopf-Lax
e de Primeira Ordem.
Três apêndices encerram o texto desta dissertação de mestrado; estes reúnem material elementar
sobre Cálculo Estocástico e Análise Funcional.
|
Page generated in 0.0521 seconds