Spelling suggestions: "subject:"domaine dde transduction protéique"" "subject:"domaine dee transduction protéique""
1 |
Vectorisation de molécules biologiques par la protéine ZEBRA du Virus Epstein-Barr : applications en thérapie humaine / Optimization of ZEBRA protein as an innovative delivery system for therapeutic moleculesMarchione, Roberta 04 June 2014 (has links)
La compréhension des mécanismes moléculaires de différentes pathologies a permis la caractérisation de gènes et de protéines impliqués dans la pathogénèse et l'identification de cibles thérapeutiques intracellulaires. La nature hydrophobique de la membrane cellulaire empêche le passage des médicaments dans les cellules. Les Cell-Penetrating Peptides (CPP) ou domaines de transduction protéiques (PTD) sont des peptides qui permettent l'internalisation de macromolécules hydrophiles in cellulo et in vivo. Un nouveau peptide issu du facteur de transcription ZEBRA du virus Epstein-Barr, et qui possède des propriétés de transduction a été caractérisé récemment dans notre laboratoire. Des études par mutagénèse de délétion de la protéine ZEBRA ont permis d'identifier la région d'acides aminés (nommé ainsi MD) impliquée dans la pénétration cellulaire. Ce peptide traverse les membranes des cellules de mammifères par un mécanisme de translocation directe, même lorsqu'il est fusionné à des molécules telles que la protéine reportrice eGFP. Le mécanisme de pénétration directe représente un grand avantage pour les applications thérapeutiques: les molécules cargos peuvent être internalisées directement dans le cytoplasme cellulaire sans dégradation et sous une forme biologiquement active. L'objectif de cette thèse est d'étudier les propriétés de pénétration cellulaire du peptide MD et d'évaluer ses applications thérapeutiques comme système de vectorisation des protéines. Ce travail est structuré en trois parties. La première partie porte sur l'étude de l'optimisation de la séquence peptidique MD par réduction de taille et l'évaluation du rôle de sa composition en acides aminés dans le processus de translocation à travers la membrane cellulaire. Cette étude a conduit à l'identification d'une séquence plus courte MD (MD11) possédant une efficacité et un mécanisme de translocation inchangés. La deuxième partie décrit une approche thérapeutique basée sur MD11 visant à la complémentation protéique d'un dysfonctionnement identifiée dans la plupart des cancers. Les cellules tumorales présentent des altérations dans la machinerie de traduction résultant dans une prolifération cellulaire incontrôlée. Parmi les différents facteurs intervenant dans la régulation de ce processus, le facteur eucaryote d'initiation 3 (eIF3) contribue à l'oncogenèse et au maintien de l'état cancéreux. Ce complexe est composé de 13 sous-unités, désignées eIF3 a-m. L'expression de certaines sous-unités est altérée dans plusieurs cancers, et en particulier la sous-unité f (eIF3f) est significativement diminuée dans le mélanome, les cancers du pancréas, de la vulve, du sein, de l'intestin et de l'ovaire. L'expression ectopique par transfection transitoire du gène eIF3f inhibe la synthèse protéique et induit l'apoptose dans le mélanome et dans les cellules cancéreuses pancréatiques. A partir de ces observations, nous avons développé une approche thérapeutique innovante pour le traitement des cancers dans lesquels la protéine manquante eIF3f est produite sous forme recombinante fusionnée à la séquence de MD11, et ensuite internalisée dans les cellules cibles tumorales. Ces résultats démontrent que le système de transfert de eIF3f basé sur MD11 représente une stratégie efficace pour supprimer la prolifération des cellules tumorales. La dernière partie de cette thèse explore la propriété de pénétration de MD11 dans les cellules de levure, et en particulier dans le champignon pathogène Candida albicans. Les résultats obtenus démontrent la polyvalence de MD11, qui fonctionne comme vecteur de protéines à activité biologique aussi bien dans la levure que dans les cellules de mammifères. Le potentiel de MD11 comme système de transport et de relargage des protéines a donc été établis, toutefois certaines améliorations en ce qui concerne la formulation des protéines de fusion et des études in vivo doivent être réalisées afin de valider son efficacité thérapeutique. / In recent years, the understanding of disease molecular mechanisms has led to the identification of genes and proteins that are altered in disease state and many therapeutic targets have been found located within cells. The protective and hydrophobic nature of plasma membrane prevents therapeutic drugs from entering cells. Cell-penetrating peptides (CPPs) or protein transduction domains (PTDs) have emerged as a group of non-invasive delivery vectors for various hydrophilic macromolecules, and several in vitro and in vivo applications as pharmaceutical carriers have been reported. A novel cell-penetrating peptide deriving from the Epstein-Barr virus ZEBRA transcription factor has been recently characterized in our laboratory. A reductionist study of full-length ZEBRA protein has allowed to identify the amino acid region (named as Minimal Domain, MD) implicated in cellular uptake. This peptide is able to cross the mammalian cell membranes via a direct translocation mechanism even when fused to cargo molecules such as eGFP reporter protein. The direct penetration mechanism represents a great advantage for therapeutic applications as the cargo molecules can be directly delivered into cells cytoplasm in a biological active form. The aim of this thesis is to explore the cell-penetrating properties of the MD peptide and evaluate its applications as therapeutic protein delivery system. This work is structured in three parts.The first part describes the study on the optimization of MD peptide sequence by size-reduction and the evaluation of its amino acid composition role in the translocation process across the cell membrane. This study has led to the identification of a shorter MD sequence (MD11) with unvaried mechanism of translocation. The second section describes a MD11-based therapeutic approach aiming at repair a dysfunction of the protein synthesis identified in most cancers. The regulation of the protein synthesis has a crucial role in governing the eukaryotic cell growth and subtle defects in the translational machinery can alter the cellular physiology and lead to cell malignancy. Among the different factors intervening in the regulation of this process, the eukaryotic initiation factor 3 (eIF3) contributes to oncogenesis and maintenance of the cancer state. This complex is composed of 13 subunits (designated eIF3 a-m). The expression of eIF3 subunits is altered in several cancers, and in particular the f subunit (eIF3f) is significantly down-regulated in pancreas, vulva, breast, melanoma, ovary and small intestine tumors. The eIF3f ectopic expression by transient gene transfection inhibits cellular protein synthesis and induces apoptosis in melanoma and pancreatic cancer cells. Starting from these observations, we developed an innovative therapeutic approach for cancer treatment in which the missing eIF3f protein is produced in vitro in fusion to MD11, and delivered to cells. These results have demonstrated that the MD11- based eIF3f transfer system may represent a powerful strategy to suppress the tumor-cell proliferation. The last part of this thesis explores the cell-penetrating property of MD11 in yeast cells, and in particular in the pathogenic fungus Candida albicans. The presented results demonstrate the versatility of MD11, functioning as vectors in both yeast and mammalian cells and as carrier for proteins with biological activity.The MD11 potential as protein delivery system is evident; however some improvements regarding the fusion protein formulation and in vivo studies should be realized to validate the effectiveness of its therapeutic application.
|
Page generated in 0.1389 seconds