• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Low-power High-speed 8-bit Pipelining CLA Design Using Dual Threshold Voltage Domino Logic and Low-cost Digital I/Q Separator for DVB-T

Cheng, Tsai-Wen 10 July 2006 (has links)
This thesis includes two topics. One is a low-power high-speed 8-bit pipelining CLA design using dual threshold voltage (dual- Vth) domino logic. The other is a low-cost digital I/Q separator for DVB-T receivers. A high speed and low power 8-bit CLA using dual- Vth domino logic blocks arranged in a PLA-like style with pipelining is presented. According to parallely precharge and sequentially evaluate in a cascaded set of domino logic blocks, transistors in the precharge part and the evaluation part of dual- Vth domino logic are, respectively, replaced by high Vth transistors to reduce subthreshold leakage current through OFF transistors, and low Vth transistors. Moreover, an nMOS transistor is inserted in the precharge phase of the output inverter such that the two-phase dual- Vth domino logic can be properly applied in a pipeline structure. Consequently, the proposed design keeps the advantage of high speed while attaining the effect of low power dissipation. A low-cost digital I/Q separator is presented in the second part of this thesis. Using digital I/Q separator in place of the traditional analog I/Q separator guarantees the design conquer gain and phase mismatch problems between the I and Q channels. The proposed design can berealized by inverters and shifters such that the goal of low cost can be achieved.
2

EFFICIENT DESIGN OF CARRY SELECT ADDER USING DOMINO MANCHESTER CARRY CHAIN

Meruguboina, Dronacharya 01 May 2017 (has links)
Significant characteristic of any VLSI design circuit is its power, reliability, operating frequency and implementation cost. Dynamic CMOS designs provide high operating speeds compared to static CMOS designs combined with low silicon area requirement. This thesis describes the design and the optimization of high performance carry select adder. Previous researchers believed that existing CSA designs has reached theoretical speed bound. But, only a considerable portion of hardware resources of traditional adders are used in worst case scenario. Based on this observation our proposed design will improve on theoretical limit. The major scope of this proposed design is to increase the speed of carry generation between intermediate blocks of Carry select Adder (CSA) by introducing fast multiple clock Domino Manchester carry chain (MCC) that generates carry outputs. This design technique will have some advantages compared to pre-existing implementations in operating speed and power delay product. Simulation has been done using GPDK (Generic Process Design Kits) technology using cadence virtuoso. Thus the proposed technique provides advantages over pre-existing techniques in terms of operating speed.
3

Eliminating Charge Sharing in Clocked Logic Gates on the Device Level Employing Transistors with Multiple Independent Inputs

Trommer, Jens, Simon, Maik, Slesazeck, Stefan, Weber, Walter M., Mikolajick, Thomas 23 June 2022 (has links)
Charge sharing poses a fundamental problem in the design of dynamic logic gates, which is nearly as old as digital circuit design itself. Although, many solutions are known, up to now most of them add additional complexity to a given system and require careful optimization of device sizes. Here we propose a simple CMOS-technology compatible transistor level solution to the charge sharing problem, employing a new class of field effect transistors with multiple independent gates (MIGFETs). Based on mixed-mode simulations in a coordinated device-circuit co-design framework, we show that their underlying device physics provides an inherent suppression of the charge sharing effect. Exemplary circuit layouts as well as discussion on the switching performance are given.

Page generated in 0.0506 seconds