• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • Tagged with
  • 13
  • 13
  • 7
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Apprentissage de règles associatives temporelles pour les séquences temporelles de symboles / Learning temporal association rules on Symbolic time sequences

Guillame-Bert, Mathieu 23 November 2012 (has links)
L'apprentissage de modèles temporels constitue l'une des grandes problématiques de l'Exploration de Données (Data Mining). Dans cette thèse, nous avons développé un nouveau modèle temporel appelé TITA Rules (Règle associative temporelle basé sur des arbres d'intervalles). Ce modèle permet de décrire des phénomènes ayant un certain degré d'incertitude et/ou d'imprécision. Ce modèle permet entre autres d'exprimer la synchronicité entre évènements, les contraintes temporelles disjonctives et la négation temporelle. De par leur nature, les TITA Rules peuvent êtes utilisées pour effectuer des prédictions avec une grande précision temporel. Nous avons aussi développé un algorithme capable de découvrir et d'extraire de manière efficace des TITA Rules dans de grandes bases de données temporelles. Le cœur de l'algorithme est basé sur des techniques de minimisation d'entropie, de filtrage par Apriori et par des analyses de co-dépendance. Note modèle temporelle et notre algorithme ont été appliqués et évalués sur plusieurs jeux de données issues de phénomènes réels et de phénomènes simulés. La seconde partie de cette thèse à consisté à étudier l'utilisation de notre modèle temporel sur la problématique de la Planification Automatique. Ces travaux ont mené au développement d'un algorithme de planification automatique. L'algorithme prend en entrée un ensemble de TITA Rules décrivant le fonctionnement d'un système quelconque, une description de l'état initial du système, et un but à atteindre. En retour, l'algorithme calcule un plan décrivant la meilleure façon d'atteindre le but donné. Par la nature même des TITA Rules, cet algorithme est capable de gérer l'incertain (probabilités), l'imprécision temporelle, les contraintes temporelles disjonctives, ainsi que les événements exogènes prédictibles mais imprécis. / The learning of temporal patterns is a major challenge of Data mining. We introduce a temporal pattern model called Temporal Interval Tree Association Rules (Tita rules or Titar). This pattern model can be used to express both uncertainty and temporal inaccuracy of temporal events. Among other things, Tita rules can express the usual time point operators, synchronicity, order, and chaining,disjunctive time constraints, as well as temporal negation. Tita rules are designed to allow predictions with optimum temporal precision. Using this representation, we present the Titar learner algorithm that can be used to extract Tita rules from large datasets expressed as Symbolic Time Sequences. This algorithm based on entropy minimization, apriori pruning and statistical dependence analysis. We evaluate our technique on simulated and real world datasets. The problem of temporal planning with Tita rules is studied. We use Tita rules as world description models for a Planning and Scheduling task. We present an efficient temporal planning algorithm able to deal with uncertainty, temporal inaccuracy, discontinuous (or disjunctive) time constraints and predictable but imprecisely time located exogenous events. We evaluate our technique by joining a learning algorithm and our planning algorithm into a simple reactive cognitive architecture that we apply to control a robot in a virtual world.
12

Modélisation et classification dynamique de données temporelles non stationnaires / Dynamic classification and modeling of non-stationary temporal data

El Assaad, Hani 11 December 2014 (has links)
Cette thèse aborde la problématique de la classification non supervisée de données lorsque les caractéristiques des classes sont susceptibles d'évoluer au cours du temps. On parlera également, dans ce cas, de classification dynamique de données temporelles non stationnaires. Le cadre applicatif des travaux concerne le diagnostic par reconnaissance des formes de systèmes complexes dynamiques dont les classes de fonctionnement peuvent, suite à des phénomènes d'usures, des déréglages progressifs ou des contextes d'exploitation variables, évoluer au cours du temps. Un modèle probabiliste dynamique, fondé à la fois sur les mélanges de lois et sur les modèles dynamiques à espace d'état, a ainsi été proposé. Compte tenu de la structure complexe de ce modèle, une variante variationnelle de l'algorithme EM a été proposée pour l'apprentissage de ses paramètres. Dans la perspective du traitement rapide de flux de données, une version séquentielle de cet algorithme a également été développée, ainsi qu'une stratégie de choix dynamique du nombre de classes. Une série d'expérimentations menées sur des données simulées et des données réelles acquises sur le système d'aiguillage des trains a permis d'évaluer le potentiel des approches proposées / Nowadays, diagnosis and monitoring for predictive maintenance of railway components are important key subjects for both operators and manufacturers. They seek to anticipate upcoming maintenance actions, reduce maintenance costs and increase the availability of rail network. In order to maintain the components at a satisfactory level of operation, the implementation of reliable diagnostic strategy is required. In this thesis, we are interested in a main component of railway infrastructure, the railway switch; an important safety device whose failure could heavily impact the availability of the transportation system. The diagnosis of this system is therefore essential and can be done by exploiting sequential measurements acquired successively while the state of the system is evolving over time. These measurements consist of power consumption curves that are acquired during several switch operations. The shape of these curves is indicative of the operating state of the system. The aim is to track the temporal dynamic evolution of railway component state under different operating contexts by analyzing the specific data in order to detect and diagnose problems that may lead to functioning failure. This thesis tackles the problem of temporal data clustering within a broader context of developing innovative tools and decision-aid methods. We propose a new dynamic probabilistic approach within a temporal data clustering framework. This approach is based on both Gaussian mixture models and state-space models. The main challenge facing this work is the estimation of model parameters associated with this approach because of its complex structure. In order to meet this challenge, a variational approach has been developed. The results obtained on both synthetic and real data highlight the advantage of the proposed algorithms compared to other state of the art methods in terms of clustering and estimation accuracy
13

Narrative generation by associative network extraction from real-life temporal data

Vaudry, Pierre-Luc 10 1900 (has links)
Les données portant sur des événements abondent dans notre société technologique. Une façon intéressante de présenter des données temporelles réelles pour faciliter leur interprétation est un récit généré automatiquement. La compréhension de récits implique la construction d'un réseau causal par le lecteur. Les systèmes de data-to-text narratifs semblent reconnaître l'importance des relations causales. Cependant, celles-ci jouent un rôle secondaire dans leurs planificateurs de document et leur identification repose principalement sur des connaissances du domaine. Cette thèse propose un modèle d'interprétation assistée de données temporelles par génération de récits structurés à l'aide d'un mélange de règles d'association automatiquement extraites et définies manuellement. Les associations suggèrent des hypothèses au lecteur qui peut ainsi construire plus facilement une représentation causale des événements. Ce modèle devrait être applicable à toutes les données temporelles répétitives, comprenant de préférence des actions ou activités, telles que les données d'activités de la vie quotidienne. Les règles d'association séquentielles sont choisies en fonction des critères de confiance et de signification statistique tels que mesurés dans les données d'entraînement. Les règles d'association basées sur les connaissances du monde et du domaine exploitent la similitude d'un certain aspect d'une paire d'événements ou des patrons causaux difficiles à détecter statistiquement. Pour interpréter une période à résumer déterminée, les paires d'événements pour lesquels une règle d'association s'applique sont associées et certaines associations supplémentaires sont dérivées pour former un réseau associatif. L'étape la plus importante du pipeline de génération automatique de texte (GAT) est la planification du document, comprenant la sélection des événements et la structuration du document. Pour la sélection des événements, le modèle repose sur la confiance des associations séquentielles pour sélectionner les faits les plus inhabituels. L'hypothèse est qu'un événement qui est impliqué par un autre avec une probabilité relativement élevée peut être laissé implicite dans le texte. La structure du récit est appelée le fil associatif ramifié, car il permet au lecteur de suivre les associations du début à la fin du texte. Il prend la forme d'un arbre couvrant sur le sous-réseau associatif précédemment sélectionné. Les associations qu'il contient sont sélectionnées en fonction de préférences de type d'association et de la distance temporelle relative. Le fil associatif ramifié est ensuite segmenté en paragraphes, phrases et syntagmes et les associations sont converties en relations rhétoriques. L'étape de microplanification définit des patrons lexico-syntaxiques décrivant chaque type d'événement. Lorsque deux descriptions d'événement doivent être assemblées dans la même phrase, un marqueur discursif exprimant la relation rhétorique spécifiée est employé. Un événement principal et un événement principal précédent sont déterminés pour chaque phrase. Lorsque le parent de l'événement principal dans le fil associatif n'est pas l'événement principal précédent, un anaphorique est ajouté au marqueur discursif frontal de la phrase. La réalisation de surface peut être effectuée en anglais ou en français grâce à des spécifications lexico-syntaxiques bilingues et à la bibliothèque Java SimpleNLG-EnFr. Les résultats d'une évaluation de la qualité textuelle montrent que les textes sont compréhensibles et les choix lexicaux adéquats. / Data about events abounds in our technological society. An attractive way of presenting real-life temporal data to facilitate its interpretation is an automatically generated narrative. Narrative comprehension involves the construction of a causal network by the reader. Narrative data-to-text systems seem to acknowledge causal relations as important. However, they play a secondary role in their document planners and their identification relies mostly on domain knowledge. This thesis proposes an assisted temporal data interpretation model by narrative generation in which narratives are structured with the help of a mix of automatically mined and manually defined association rules. The associations suggest causal hypotheses to the reader who can thus construct more easily a causal representation of the events. This model should be applicable to any repetitive temporal data, preferably including actions or activities, such as Activity of Daily Living (ADL) data. Sequential association rules are selected based on the criteria of confidence and statistical significance as measured in training data. World and domain knowledge association rules are based on the similarity of some aspect of a pair of events or on causal patterns difficult to detect statistically. To interpret a specific period to summarize, pairs of events for which an association rule applies are associated. Some extra associations are then derived. Together the events and associations form an associative network. The most important step of the Natural Language Generation (NLG) pipeline is document planning, comprising event selection and document structuring. For event selection, the model relies on the confidence of sequential associations to select the most unusual facts. The assumption is that an event that is implied by another one with a relatively high probability may be left implicit in the text. The structure of the narrative is called the connecting associative thread because it allows the reader to follow associations from the beginning to the end of the text. It takes the form of a spanning tree over the previously selected associative sub-network. The associations it contains are selected based on association type preferences and relative temporal distance. The connecting associative thread is then segmented into paragraphs, sentences, and phrases and the associations are translated to rhetorical relations. The microplanning step defines lexico-syntactic templates describing each event type. When two event descriptions need to be assembled in the same sentence, a discourse marker expressing the specified rhetorical relation is employed. A main event and a preceding main event are determined for each sentence. When the associative thread parent of the main event is not the preceding main event, an anaphor is added to the sentence front discourse marker. Surface realization can be performed in English or French thanks to bilingual lexico-syntactic specifications and the SimpleNLG-EnFr Java library. The results of a textual quality evaluation show that the texts are understandable and the lexical choices adequate.

Page generated in 0.0948 seconds