• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 639
  • 175
  • 156
  • 57
  • 40
  • 16
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • Tagged with
  • 1512
  • 205
  • 188
  • 179
  • 161
  • 150
  • 141
  • 106
  • 100
  • 99
  • 93
  • 92
  • 88
  • 85
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

MC3R and MC4R Knockdown via RNA Interference

Mankin, Danielle N 12 July 2012 (has links)
Melanocortins (MCs) play an important role in feeding, metabolism, and energy expenditure. While melanocortin receptor (MCR) mRNA has been found in the mesolimbic dopamine (DA) pathway, the ability of melanocortins to regulate feeding and other behaviors through actions on the mesolimbic DA system have not been examined. Short-hairpin RNAs (shRNAs) were created targeting MC3R and MC4R and were tested via in vitro studies for their ability to knockdown their target receptor. A total of three shRNAs were created targeting each receptor, and each shRNA caused successful knockdown. These shRNAs are tools that can be used for future in vivo studies to examine the various behavioral effects of melanocortins on the mesolimbic DA pathway.
322

Héroïnomanies et schizophrénies aux frontières d' une comorbidité /

Pouclet, Claude. Jacob, Claude. January 2002 (has links) (PDF)
Reproduction de : Thèse d' exercice : Médecine spécialisée : Nancy 1 : 2002. / Thèse : 2002NAN11097. Titre provenant de l'écran-titre.
323

Dopamine concentrations in nucleus accumbens subregions are differentially affected by ethanol administration

Howard, Elaina Charlotte 16 October 2009 (has links)
Dopamine increases in the nucleus accumbens after contingent and noncontingent ethanol administration in rats, but the contributions of the core, coreshell border, and shell subregions to this response are unclear. Also, it is not fully understood if increases in dopamine under these circumstances are due to the pharmacological effects of ethanol, stimuli associated with administration, or both. The studies presented in this dissertation were conducted to investigate dopamine’s role in each of these accumbal regions during ethanol administration and presentation of associated stimuli. Using microdialysis, ethanol and dopamine concentrations in accumbal subregions were measured every five minutes before, during, and after either experimenter-delivered intravenous ethanol or operant ethanol self-administration. After intravenous ethanol infusions, the increase in dopamine in the shell of the accumbens was significantly higher than that observed in the core. During operant ethanol self-administration, the core, core-shell border, and shell, all exhibited significant increases in dopamine during transfer of the animal into the operant chamber, with animals trained to drink sucrose + ethanol showing significantly higher increases when compared to those trained to drink sucrose alone. Dopamine increased significantly only in the core-shell border during ethanol consumption, and dopamine levels in the core and shell responded in a similar manner during all phases of the experiment. Together, these results suggest that dopamine responses to intravenous ethanol infusions and operant ethanol self-administration are subregion specific. Also, while increases in dopamine resulting from intravenous ethanol infusions in naïve animals appear to be due to the pharmacological effects of the drug, increases in ethanol-experienced animals during transfer into the operant chamber, and during ethanol consumption, may also be due to stimuli associated with ethanol administration. / text
324

Dopamine concentrations in the nucleus accumbens core-shell border during the early stages of operant ethanol self-administration

Carrillo, Jennifer 02 February 2011 (has links)
Mesolimbic dopamine plays an important role in ethanol reinforcement, and studies have shown that accumbal dopamine increases during operant ethanol self-administration. However, no one has ever studied this dopaminergic response during the acquisition of ethanol self-administration. Furthermore, some studies have shown that the dopamine signal does not correlate with the pharmacological effects of ethanol, but with the time during which the animal consumes the majority of the ethanol solution and when the sensory stimuli of ethanol are strongest. However, there is currently no direct evidence showing that the sensory stimuli of ethanol is indeed what causes the brief increase in accumbal dopamine during ethanol self-administration. The studies in this dissertation attempted to elucidate these issues. We designed and tested a placebo spout, which was to be used to study the relationship between accumbal dopamine and the sensory stimuli of ethanol during self-administration. Unfortunately, the placebo designs were either not feasible for performing microdialysis or did not show promising behavioral data. We also developed and tested a self-administration protocol in which the concentrations of ethanol (10%) were kept constant throughout the study. The new protocol was successful in initiating and maintaining ethanol self-administration, and the animals doubled their intake from day 1 to day 2 of ethanol consumption. Using this protocol, we trained male Long Evans rats to self-administer ethanol and measured accumbal dopamine during the first two days of ethanol self-administration through microdialysis. The behavioral and neurochemical data matched. A single exposure to ethanol was sufficient for the animals to double their ethanol consumption by day 2 and to cause an increase in accumbal dopamine during the first 5 minutes of ethanol self-administration. The dopamine response was observed during the time when the sensory stimuli of ethanol were strongest, but before ethanol reached peak concentrations in the brain. Overall, these results suggest that the dopamine response to ethanol self-administration may not be solely pharmacological and that a single exposure to ethanol is sufficient to learn the association between ethanol and its cues. These findings give us greater insight into mesolimbic dopamine's role in the early stages of ethanol reinforcement. / text
325

Examination of the Role of Dopamine D3 Receptors in Behavioural Sensitization to Ethanol

Harrison, Sarah Jane 31 July 2008 (has links)
Dopamine D3 receptors (D3Rs) have been implicated in mediating behavioural sensitization to various drugs of abuse, but their role in ethanol (EtOH) sensitization has not been directly examined. Neil Richtand proposed a role for D3Rs in the modulation of sensitization by acting as an inhibitor of D1/D2 receptor-mediated behaviours, and several reports suggest D3Rs up-regulate in response to chronic drugs of abuse. In separate experiments, we examined EtOH sensitization in D3R knockout (KO) as well as in D1R and D2R KO mice. We also examined amphetamine sensitization in D3R KOs compared to wild type mice. We challenged C57Bl/6 and DBA/2 mice with a D3R agonist (PD128907) and antagonist (U99194A) to examine how acute and chronic D3R activation and inactivation may affect the induction and expression of EtOH sensitization. We investigated D1/D3R interactions in sensitized and control mice and examined whether EtOH sensitization leads to changes in D3R binding using [125I]-7-OH-PIPAT autoradiography. Results showed that D3R KOs, were resistant to EtOH but not to amphetamine sensitization. Chronic but not acute D3R blockade with U99194A inhibited the induction, whereas acute D3R activation with PD128907 attenuated the expression of EtOH sensitization. In our D1/D3R interaction study we observed that although PD128907 attenuated D1 agonist-induced hyperactivity with SKF81297, this effect was the same in sensitized and control animals, even though sensitized mice were more responsive to PD128907 than controls. This enhanced response, which suggests a functional up-regulation of D3Rs, was not accompanied by changes in D3R binding as indicated by autoradiography, and could mean that functional changes in the D3R associated with EtOH sensitization occur elsewhere than at the level of the membrane-bound receptor. Taken together, these results suggest a modulatory role for the D3R in EtOH but not amphetamine sensitization, where D3R activation attenuates the expression and D3R blockade prevents the induction of EtOH sensitization. These results are important because a better understanding of the role of the D3R in EtOH sensitization may help not only to identify some of the underlying neural mechanisms of sensitization, but also help in the identification of treatment strategies for patients that may be susceptible to alcohol abuse.
326

Factors that influence the dopamine neuron as revealed by dopamine transporter expression

Burke, Mark, 1975- January 2005 (has links)
The primary focus of the present thesis is the exploration of factors that influence the dopamine (DA) neuron by examining the expression of the dopamine transporter (DAT), a marker of the DA neuron. The secondary focus of this thesis is on the serotonin neuron and in particular the serotonin transporter (SERT), a marker of the serotonin neuron. To this end three distinct and separate models have been employed. The goals of this thesis were: (1) to test the hypothesis that monoamine oxidase inhibition during development alters serotonergic innervation in the cortex and raphe, while not affecting relative DA innervation of nigrostriatal pathway, (2) to test the hypothesis that elevated brain levels of hypoxanthine (Hx) deleteriously affect the DA neuron, and (3) to test the hypothesis that densities of DAT and SERT in brainstem cell body regions distinguish alcohol-preferring vervet monkeys with different behavioral patterns of ethanol consumption. / Alterations in the activity of monoamine oxidase (MAO), a degradative enzyme that plays an important role in regulating levels of monoamine transmitters, may have a profound effect on brain development. The present study investigates relative DA and serotonin innervation of cortical and subcortical areas, measured by DAT and SERT densities, following MAO inhibition (A or B or A+B) in mice throughout gestation and early post-natal development. DAT binding was unaltered within the nigrostriatal pathway. The most significant finding reported here is that the combined MAO-A+B inhibition significantly reduced SERT binding by 25% in both the cortex and raphe nucleus. Lower levels of SERT binding were apparent during the early post-natal period (PND 14), a period during which pups were still exposed to MAO inhibitors in the dam's milk, but also persisted into later life (PND's 35 and 90) after inhibitors were no longer being administered. Persistent effects were restricted to cortex and raphe, suggesting a relative vulnerability of these regions to alterations in monoamine transmitter levels during development. / The second study presents data demonstrating that Hx delivered intracerebroventricularly significantly reduces the number of tyrosine hydroxylase immunoreactive cells (TH-ir) in the substantia nigra by 22% and 30%, at 7 and 21 days, respectively. After 3 days of Hx administration, striatal DA and serotonin were elevated over control levels by 22% and 25%, respectively, but returned to control levels by 7 days. The serotonin metabolite 5-HIAA was elevated after 3 days of Hx, but levels of DA metabolites were not different from control. Locomotion, a behavior thought to be related to DA transmission, was elevated following Hx treatment, as were presynaptic markers of the DA system such as DAT and TH protein levels. The persistent reduction in TH positive cell numbers suggests that Hx damages or kills DA neurons. The increase in intracellular DA at early time points suggests that Hx might interfere with DA release, possibly by temporarily inactivating DA neurons. These findings are consistent with the hypothesis that Hx, a purine significantly elevated in blood and CSF of Lesch-Nyhan patients, maybe involved in DA dysfunction. / Studies on alcohol abuse have focused on the mesolimbic DA pathway and the serotonergic influence within this pathway. Here we report that abstinent binge-drinking monkeys have significant reductions of SERT binding, and to a lesser extent, DAT binding in the midbrain region, while abstinent heavy-drinking subjects have elevated levels of DAT binding, as compared to controls. Both mesolimbic and nigrostriatal pathways are affected. CSF levels of both HVA and 5-HIAA substantiate the neuroanatomical differences between binge- and heavy-drinking vervets. Taken together, these findings provide a neurochemical profile with which to further distinguish subtypes of alcohol-preferring vervet monkeys.
327

Examination of the Role of Dopamine D3 Receptors in Behavioural Sensitization to Ethanol

Harrison, Sarah Jane 31 July 2008 (has links)
Dopamine D3 receptors (D3Rs) have been implicated in mediating behavioural sensitization to various drugs of abuse, but their role in ethanol (EtOH) sensitization has not been directly examined. Neil Richtand proposed a role for D3Rs in the modulation of sensitization by acting as an inhibitor of D1/D2 receptor-mediated behaviours, and several reports suggest D3Rs up-regulate in response to chronic drugs of abuse. In separate experiments, we examined EtOH sensitization in D3R knockout (KO) as well as in D1R and D2R KO mice. We also examined amphetamine sensitization in D3R KOs compared to wild type mice. We challenged C57Bl/6 and DBA/2 mice with a D3R agonist (PD128907) and antagonist (U99194A) to examine how acute and chronic D3R activation and inactivation may affect the induction and expression of EtOH sensitization. We investigated D1/D3R interactions in sensitized and control mice and examined whether EtOH sensitization leads to changes in D3R binding using [125I]-7-OH-PIPAT autoradiography. Results showed that D3R KOs, were resistant to EtOH but not to amphetamine sensitization. Chronic but not acute D3R blockade with U99194A inhibited the induction, whereas acute D3R activation with PD128907 attenuated the expression of EtOH sensitization. In our D1/D3R interaction study we observed that although PD128907 attenuated D1 agonist-induced hyperactivity with SKF81297, this effect was the same in sensitized and control animals, even though sensitized mice were more responsive to PD128907 than controls. This enhanced response, which suggests a functional up-regulation of D3Rs, was not accompanied by changes in D3R binding as indicated by autoradiography, and could mean that functional changes in the D3R associated with EtOH sensitization occur elsewhere than at the level of the membrane-bound receptor. Taken together, these results suggest a modulatory role for the D3R in EtOH but not amphetamine sensitization, where D3R activation attenuates the expression and D3R blockade prevents the induction of EtOH sensitization. These results are important because a better understanding of the role of the D3R in EtOH sensitization may help not only to identify some of the underlying neural mechanisms of sensitization, but also help in the identification of treatment strategies for patients that may be susceptible to alcohol abuse.
328

Functional Characterization of the Parl Mitochondrial Proteins in Zebrafish (Danio rerio)

Noble, Sandra A. 30 April 2014 (has links)
The aim of this thesis was the functional characterization of the zebrafish parl (Presenilin-Associated Rhomboid-Like) genes which code for mitochondrial proteins involved in cell survival. A mutation in PARL has been described in Parkinson’s disease patients. I investigated the role of mitochondrial PD-related proteins using a zebrafish parla and parlb deficiency model. I found that the knockdown of both parl genes is lethal. Parla plays a larger role in patterning of the DA neurons in the ventral diencephalon than Parlb. The human PARL rescued the double morphant phenotype, suggesting function conservation between zebrafish and humans. I was able to rescue the mortality and DA neuron mispatterning observed in double morphants with synthetic pink1 mRNA. This suggests that parl genes are epistatic to pink1 in zebrafish. To visualize mitochondria specifically in dopaminergic neurons of live zebrafish, I established a transgenic line Tg(dat:tom20 MLS-mCherry) where regulatory elements of the dopamine transporter (dat) were used to drive expression of a Tom20-mCherry fusion protein that is targeted to the mitochondria. I characterised the expression of Tom20-mCherry to the mitochondria of the majority of DA neuron groups. In addition, I observed a decrease in mCherry fluorescence following MPTP exposure of live fish. The PD-related mutation in PARL is located in a cleavage site of the mammalian protein, which is necessary for the production of the beta peptide; however, this site is predicted to be absent in the zebrafish Parls. To establish the cleavage patterns of the zebrafish Parls and compare them to those of human PARL, I examined the cleavage of Parl-Flag constructs in cultured cells. I detected one band for Parla-Flag and two bands representing Parlb-Flag. The parla and parlb deficiency model along with the characterization of the cleavage patterns of Parl and the Tg(dat:tom20 MLS-mCherry) transgenic line are tools which will help elucidate the role of mitochondrial proteins in PD research.
329

The actions of dopamine receptors on sound-evoked and spontaneous activity in the inner ear

Garrett, Andrew Richard January 2009 (has links)
[Truncated abstract] The mammalian cochlea receives an efferent innervation which originates in the superior olive. Known collectively as the olivocochlear system, this efferent innervation can be divided into lateral and medial systems. While the function of the lateral efferent system in the cochlea is still unknown, previous studies have identified both excitatory and inhibitory changes in sound-evoked and spontaneous cochlear responses attributable to the lateral efferent system. One of the neurotransmitters in the lateral efferents is the catecholamine dopamine, which in the central nervous system is known to exert inhibitory and excitatory effects by activating different receptor subtypes. The first experiments in this thesis were designed to determine if activation or blockade of different dopamine receptor subtypes in the cochlea could lead to both excitatory and inhibitory changes in sound-evoked and spontaneous cochlear responses. Adult guinea pigs were anaesthetised (Nembutal and Hypnorm) and highly specific D1/5 (SKF 38393, SKF 81297, SCH 23390), D2 ((+) PHNO, L 741, 626) and D3 (PD 128907, U 99194A) receptor agonists and antagonists were perfused through the cochlea for 15 minutes. Sound-evoked (compound action potential, summating potential, cochlear microphonic) and spontaneous cochlear responses were recorded before and after perfusion. Remarkably, activating or blocking D1/5 or D2 receptor subtypes resulted in the suppression of CAP amplitudes. These findings are paradoxical as the agonist data suggest that the D1/5 and D2 receptor subtypes are inhibitory, but the antagonist perfusions suggest that these receptors are excitatory. We propose that the presence of an agonist induces a process of receptor desensitisation which would elicit changes akin to receptor antagonism. If this is indeed the case then our agonist findings are spurious and require further interpretation. ... The suppression of the cochlear microphonic suggests that dopamine receptor influence is not confined to the primary afferent dendrite may also include the active process of the outer hair cells. The D1/5 and D2 antagonist data also suggests that dopamine receptors are activated by intrinsic dopamine. Therefore, we attempted to investigate the effects of putative dopamine depletion of the cochlea and found that application of the dopaminergic neurotoxin MPTP causes changes in both neural and hair cell responses which have not been reported before. However, we also demonstrated that tyrosine hydroxylase positive nerve fibres are still present in MPTP treated cochleae which suggests that dopamine is still present in these cochleae. Furthermore, we observed significant electrophysiological changes in these same cochleae when these were exposed to a D2 receptor antagonist which again supports the presence of intrinsic dopamine in these 'depleted cochleae'. These data suggest that the currently accepted method of acute dopamine depletion using MPTP is insufficient and different methods must be developed in the future.
330

PET studies of the dopamine system in relation to cognitive functions /

Erixon-Lindroth, Nina, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.

Page generated in 0.0688 seconds