• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diffusion models for the doping of semiconductor crystals

Hearne, M. T. January 1988 (has links)
No description available.
2

Analysis of Thermally Diffused Single Mode Optical Fiber Couplers

Velayudhan, Nirmalkumar 22 December 1994 (has links)
The phenomenon of dopant diffusion as a viable means of coupler fabrication is investigated. It is well known that the diffusion of dopants can improve the uniformity of multimode star couplers manufactured by the fused biconical taper technique. The theoretical basis for the same phenomenon in a single mode coupler is developed, on the basis of the theory of diffusion and the Gaussian approximation for circular fibers. A novel technique to manufacture and design single mode optical fiber couplers with a minimization of the manufacturing complexity is demonstrated. Traditionally fused biconical tapered couplers have been manufactured by twisting, fusing and elongating optical fibers at elevated temperatures. Usually, high temperature oxy-hydrogen flames are used for such purposes and some degree of skill is needed for a human operator. The complexity of control procedures for automation of the process is greatly increased by the fact that the tapering process is an integral part of the feedback loop. This can be eliminated if a constant tension is maintained on the fibers in the heating process while heat is applied uniformly from a source such as a platinum wire furnace. Since the refractive index differentials responsible for the guiding phenomenon at optical frequencies are directly dependent on concentration of dopants like fluorine and germania, radial diffusion of such dopants causes the fiber cores that are heated in a platinum wire furnace to come closer together. Such proximity leads to the phenomenon of evanescent field interaction or coupling of optical power from one arm of the coupler to the other. The time evolution of the coupling process can be predicted in theory. While initial results are promising, the ability to automate the manufacture of couplers will be successful only after greater control over the variables is established. It is the intention of this work to understand the physics behind the mechanism as well as to prove the feasibility of modeling real world phenomena under controlled conditions. / Master of Science
3

Control of complex structural geometry in optical fibre drawing

Lyytik�inen, Katja Johanna January 2004 (has links)
Drawing of standard telecommunication-type optical fibres has been optimised in terms of optical and physical properties. Specialty fibres, however, typically have more complex dopant profiles. Designs with high dopant concentrations and multidoping are common, making control of the fabrication process particularly important. In photonic crystal fibres (PCF) the inclusion of air-structures imposes a new challenge for the drawing process. The aim of this study is to gain profound insight into the behaviour of complex optical fibre structures during the final fabrication step, fibre drawing. Two types of optical fibre, namely conventional silica fibres and PCFs, were studied. Germanium and fluorine diffusion during drawing was studied experimentally and a numerical analysis was performed of the effects of drawing parameters on diffusion. An experimental study of geometry control of PCFs during drawing was conducted with emphasis given to the control of hole size. The effects of the various drawing parameters and their suitability for controlling the air-structure was studied. The effect of air-structures on heat transfer in PCFs was studied using computational fluid dynamics techniques. Both germanium and fluorine were found to diffuse at high temperature and low draw speed. A diffusion coefficent for germanium was determined and simulations showed that most diffusion occurred in the neck-down region. Draw temperature and preform feed rate had a comparable effect on diffusion. The hole size in PCFs was shown to depend on the draw temperature, preform feed rate and the preform internal pressure. Pressure was shown to be the most promising parameter for on-line control of the hole size. Heat transfer simulations showed that the air-structure had a significant effect on the temperature profile of the structure. It was also shown that the preform heating time was either increased or reduced compared to a solid structure and depended on the air-fraction.
4

Control of complex structural geometry in optical fibre drawing

Lyytik�inen, Katja Johanna January 2004 (has links)
Drawing of standard telecommunication-type optical fibres has been optimised in terms of optical and physical properties. Specialty fibres, however, typically have more complex dopant profiles. Designs with high dopant concentrations and multidoping are common, making control of the fabrication process particularly important. In photonic crystal fibres (PCF) the inclusion of air-structures imposes a new challenge for the drawing process. The aim of this study is to gain profound insight into the behaviour of complex optical fibre structures during the final fabrication step, fibre drawing. Two types of optical fibre, namely conventional silica fibres and PCFs, were studied. Germanium and fluorine diffusion during drawing was studied experimentally and a numerical analysis was performed of the effects of drawing parameters on diffusion. An experimental study of geometry control of PCFs during drawing was conducted with emphasis given to the control of hole size. The effects of the various drawing parameters and their suitability for controlling the air-structure was studied. The effect of air-structures on heat transfer in PCFs was studied using computational fluid dynamics techniques. Both germanium and fluorine were found to diffuse at high temperature and low draw speed. A diffusion coefficent for germanium was determined and simulations showed that most diffusion occurred in the neck-down region. Draw temperature and preform feed rate had a comparable effect on diffusion. The hole size in PCFs was shown to depend on the draw temperature, preform feed rate and the preform internal pressure. Pressure was shown to be the most promising parameter for on-line control of the hole size. Heat transfer simulations showed that the air-structure had a significant effect on the temperature profile of the structure. It was also shown that the preform heating time was either increased or reduced compared to a solid structure and depended on the air-fraction.

Page generated in 0.074 seconds