Spelling suggestions: "subject:"doppler radar"" "subject:"doppler nadar""
1 |
Doppler-only synthetic aperture radarChua, Cheng Lock Charles. 12 1900 (has links)
SAR has traditionally been performed using high-range resolution data. This thesis is a proof-of-concept that the imaging process can be performed using high-doppler resolution data. The system requires a simple continuous wave transmitter, and the signal returns are confined to a narrow band. High-doppler resolution data is collected along an isodoppler line for different perspectives of the target. This data, a sinogram, is equivalent to taking the Radon transform of the target. The Fourier transform of the sinogram from each perspective (at an angle eÌ ) gives a slice of the two-dimensional transform subtending an angle eÌ with the axis, with equally distributed points along the line. This results in a higher density of points near the centre. Some form of weighting is necessary. This weighting is part of the Filtered Backprojection algorithm to determine the Inverse Radon transform of the sinogram. The backprojection portion is a simple redistribution of data back along the original projection line. Images were modeled by delta functions to test the above algorithm. The main points noted were that the reconstructed image was a scaled version of the original image, and that the quality of the image improved when more perspectives of the target were taken.
|
2 |
Drop-size distributions as revealed by pulsed doppler radarWilson, Dean Andrew, 1938- January 1963 (has links)
No description available.
|
3 |
Characteristics of Drizzle under Stratocumulus using Cloud Doppler RadarsGhate, Virendra 01 January 2006 (has links)
Marine stratocumulus clouds cover extensive areas of the subtropical oceans and greatly influence Earth?s radiation by strongly reflecting the incoming solar radiation. The most climatologically pronounced stratus regime is located in the South-East Pacific. Drizzle is one of the several physical processes that affects the lifecycle and evolution of marine stratus by depleting the cloud liquid water and by stabilizing the marine boundary layer through evaporative cooling. In this study we use ship-borne radar observations from two innovative research cloud radars ? a Millimeter Cloud Radar (MMCR) (lambda=8 mm) and Frequency Modulated Continuous Wave (FMCW) radar (lambda=3 mm) to study the fallout of drizzle in the sub-cloud layer. Radar inter-comparison is used to perform calibration and quality control of the FMCW radar. The FMCW observations suffer no saturation and provide profiles of radar Doppler moments from the ship level to the cloud base. A lognormal drizzle drop size distribution is assumed and the parameters (N0, r0 and sigma x) are retrieved using the observed radar reflectivity and mean Doppler velocity profiles. The retrieved parameters are used to extract bulk parameters of the drizzle size distribution such as liquid water content, total number of droplets and rainfall rates at various heights within the sub-cloud layer (typically from 50-500 m). It is demonstrated that a simple evaporation model can be used to constrain the inversion from radar observables to drizzle size distribution parameters. The model output showed that the drizzle DSD is truncated at lower end due to the rapid evaporation of smaller drops and the logarithmic width of drizzle DSD is lower than the typically prescribed value of 0.35.
|
4 |
A pseudo-dual-Doppler analysis of cyclic tornadogenesis /Dowell, David C., January 2000 (has links)
Thesis (Ph. D.)--University of Oklahoma, 2000. / Includes bibliographical references (leaves 105-115).
|
5 |
The re-intensification of Typhoon Sinlaku (2008)Sanabia, Elizabeth R. January 2010 (has links) (PDF)
Dissertation (Ph.D. in Meteorology)--Naval Postgraduate School, June 2010. / Dissertation supervisor: Harr, Patrick A. "June 2010." Description based on title screen as viewed on July 14, 2010. Author(s) subject terms: Tropical Cyclones, TCS-08, T-PARC, Extratropical Transition, Airborne Dual Doppler Radar, ELDORA, Axisymmetrization, Mesoscale Vortices, Mesoscale Convective System. Includes bibliographical references (p. 207-212). Also available in print.
|
6 |
Imaging humans with Doppler radar using a low-complexity frequency-scanned antennaYang, Shang-Te 17 February 2012 (has links)
In this work, a low-complexity two-dimensional (2D) frequency-scanned antenna is proposed to image a human using a Doppler radar. It consists of two back-to-back, air-filled microstrip leaky wave antennas (LWAs). The frequency-scanned pattern of the microstrip LWA is used to determine the target bearing in one dimension. Two such elements are used as an interferometer to determine the target bearing in the other dimension. In order to pack two LWAs closely, a design is proposed to achieve a minimal disturbance on the azimuth and elevation beam patterns. The design is measured with both static and Doppler targets to demonstrate the capability to form 2D frontal images.
To investigate the potential performance of using the proposed antenna to image a human, a simulator that includes a dynamic human signature model and the frequency-scanned antenna pattern is developed. A radar waveform that is different from that used for the measurement conducted with simple Doppler targets is proposed. A simple five-point human model is tested first to understand the capability of the antenna to image a human. Next, the antenna design and the radar processing parameters are studied to improve the image quality. Simulated frontal images of a walking human are generated and discussed. With a redesigned antenna and new radar processing steps, simulation shows that frontal imagery of a human undergoing motion can be generated. / text
|
7 |
A low noise PLL-based frequency synthesiser for X-band radar /Moes, Henderikus Jan. January 2008 (has links)
Thesis (MScIng)--University of Stellenbosch, 2008. / Bibliography. Also available via the Internet.
|
8 |
Doppler centroid ambiguity estimation for synthetic aperture radarKavanagh, Patricia F. January 1985 (has links)
For a synthetic aperture radar (SAR) system, the Doppler centroid is the azimuth Doppler frequency received from a point scatterer centered in the azimuth antenna pattern. This parameter is required by the SAR processor in order to properly focus SAR images.
Since the azimuth Doppler spectrum is weighted by the azimuth antenna pattern, the Doppler centroid can be determined by locating the peak of the Doppler spectrum. This measurement, however, is ambiguous because the azimuth Doppler spectrum is aliased by the radar pulse repetition frequency (PRF). To resolve the ambiguity, the antenna beam angle, which determines the Doppler centroid, is measured; the accuracy of this measurement must be high enough to determine the Doppler centroid to within ±PRF/2. For some SAR systems, such as the future Radarsat system, the beam angle measurement must be very accurate; this can be technically infeasible or too costly to implement.
This thesis examines an alternative approach to resolving the Doppler centroid ambiguity which does not require accurate beam angle measurement In most SAR processors, several partial azimuth aperture "looks" are processed, rather than a single long aperture, in order to yield a final SAR image with reduced speckle noise. If the Doppler centroid is in error by an integer number of PRFs, then the SAR looks will be defocussed and misregistered in range. The degree of misregistration depends on with which Doppler centroid ambiguity the data is processed. The new method for Doppler centroid ambiguity estimation measures the range displacement of SAR looks using a cross-correlation of looks in the range direction.
The theoretical background and details of the new method are discussed. The effects of differing terrain types, wave motion, and errors in the azimuth frequency modulation (FM) rate are addressed. The feasibility of the approach is demonstrated by testing the cross-correlation algorithm on available Seasat data processed with simulated Doppler centroid ambiguity errors. The Seasat analysis is extrapolated to the Radarsat system with favourable results. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
|
9 |
Integrated CMOS Doppler Radar : Power Amplifier MixerSjöholm, Olof January 2016 (has links)
This thesis is based on a paper by V. Issakov, presented 2009, where a circuit of a merged power amplifier mixer solution was demonstrated. This work takes that solution and simplifies it for the use at a lower frequency. The implementation target is a Doppler radar application in CMOS that can detect humans in a range of 5 to 15 meters. This could be used as a burglar alarm or an automatic light switch. The report will present the background of Issakov’s work, basic theory used and the implementation of the final design. Simulations will show that the solution presented work, with a 15 dB conversion loss. This design performs well compared to reference mixers. With this report it will be shown that it is possible to make a simple and compact Doppler radar system in CMOS. / Denna avhandling bygger på en artikel av V. Issakov, presenterad 2009, där en lösning för att sammanslå en effektförstärkare med en mixer till en krets visades. Detta arbete tar denna lösning och förenklar det för användning vid en lägre frekvens. Målet är att implementera en dopplerradar i CMOS som kan detektera människor inom ett avstånd på 5 till 15 meter. Denna radar skulle kunna användas som ett inbrottslarm eller en automatisk strömbrytare. Rapporten kommer att presentera bakgrunden från Issakov’s arbete, grundläggande teori som används och genomförandet av det slutliga kretsschemat. Simuleringar visar att den presenterade lösningen fungerar, med en 15 dB konverteringsförlust. Denna konstruktion presterar väl jämfört med referens mixrar. Med denna rapport visas det att det är möjligt att göra ett enkelt och kompakt dopplerradarsystem i CMOS.
|
10 |
AIM-120A DOPPLER RADAR TELEMETRY DATA REDUCTION AND ANALYSIS SOFTWAREHart, Dennis L., Smith, Marvin A. 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1994 / Town & Country Hotel and Conference Center, San Diego, California / This paper describes the application software used to convert AIM-120A, Advanced
Medium Range Air-to-Air Missile (AMRAAM), telemetry data to a series of color
images and time-correlated engineering unit results. X Window System-based
graphics facilitate visualization of the doppler radar data. These software programs
were developed for the VAX/VMS and DEC Alpha environments.
|
Page generated in 0.0334 seconds