• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role of Mechanically Gated Ion Channels in Dorsal Closure During Drosophila Morphogenesis

Hunter, Ginger January 2012 (has links)
<p>Physical forces play a key role in the morphogenesis of embryos. As cells and tissues change shape, grow, and migrate, they exert and respond to forces via mechanosensitive proteins and protein complexes. How the response to force is regulated is not completely understood. </p><p>Dorsal closure in Drosophila is a model system for studying cell sheet forces during morphogenesis. We demonstrate a role for mechanically gated ion channels (MGCs) in dorsal closure. Microinjection of GsMTx4 or GdCl<sub>3</sub>, inhibitors of MGCs, blocks closure in a dose-dependent manner. UV-mediated uncaging of intracellular Ca<super>2+</super> causes cell contraction whereas the reduction of extra- and intracellular Ca<super>2+</super> slows closure. Pharmacologically blocking MGCs leads to defects in force generation via failure of actomyosin structures during closure, and impairs the ability of tissues to regulate forces in response to laser microsurgery.</p><p>We identify three genes which encode candidate MGC subunits that play a role in dorsal closure, <italic>ripped pocket</italic>, <italic>dtrpA1</italic>, and <italic>nompC</italic>. We find that knockdown of these channels either singly or in combination leads to defects in force generation and cell shapes during closure. </p><p>Our results reveal a key role for MGCs in closure, and suggest a mechanism for the coordination of force producing cell behaviors across the embryo.</p> / Dissertation
2

A Drosophila Winged-helix nude (Whn)-like transcription factor with essential functions throughout development

Sugimura, Isamu, Adachi-Yamada, Takashi, Nishi, Yoshimi, Nishida, Yasuyoshi 06 1900 (has links)
No description available.
3

Signalling and morphogenesis during Drosophila dorsal closure / Voies de signalisation et morphogénèse pendant la fermeture dorsale de la Drosophile

Ducuing, Antoine 11 March 2016 (has links)
La fermeture dorsale est un événement majeur de l’embryogénèse de la drosophile durant lequel les cellules les plus dorsales de l’épiderme se différencient et agissent de concert pour refermer une ouverture dorsale temporairement recouverte par l’amnioséreuse. Ce processus présente de nombreuses similarités avec la cicatrisation cellulaire. J’ai montré que les voies JNK et DPP forment une boucle cohérente appelée « feed-forward loop » (boucle d’anticipation) qui contrôle la différentiation des cellules de la marge active. La branche DPP de cette boucle filtre les signaux non désirés de la voix JNK quand les embryons sont soumis à un stress thermique. Je me suis ensuite concentré sur le câble d'actine, une structure supra-cellulaire produite par les cellules de la marge active lors de la fermeture dorsale. J’ai montré que le câble d’actine est une structure discontinue qui n’est pas nécessaire pour la fermeture dorsale ou pour la cicatrisation cellulaire. Le câble d’actine homogénéise les forces et stabilise la géométrie cellulaire pour que la fermeture se fasse de manière parfaite et sans cicatrice. Sans le câble, les cellules ont une forme irrégulière, associé à des défauts de patterning et des défauts de polarité planaire qui ressemblent aux défauts que l’on trouve lors de la formation d’une cicatrice. Nous proposons donc que le câble empêche la formation de cicatrice en « congelant » les propriétés mécaniques des cellules afin de les protéger des forces qui agissent au niveau tissulaire lors de la fermeture dorsale.En conclusion, mon travail apporte un regard neuf sur la signalisation et la morphogenèse lors de la fermeture dorsale de l’embryon de Drosophile. / Drosophila dorsal closure is a key embryonic process during which the dorsal-most epidermal cells called leading edge cells differentiate and act in a coordinated manner to close a transient dorsal hole covered by the amnioserosa in a process reminiscent of wound healing. I showed that JNK and DPP are wired in a network motif called ‘feed-forward loop’ (FFL) that controls leading edge cell specification and differentiation. The DPP branch of the FFL filters unwanted JNK activity that occurs during thermal stress. Next, I focused on the actin cable, a supra-cellular structure produced by the leading edge cells during dorsal closure or wound healing from fly to humans. My data suggest that the actin cable does not provide a major contractile force. Rather, the actin cable balances forces and stabilizes cell geometry so that closure resolves in a perfectly structured and scar-free tissue. The absence of the cable leads to cell shape irregularities as well as patterning and planar cell polarity defects that are reminiscent of scarring. We propose that the cable prevents scaring by acting as a mechanical freeze field that protects fine cellular structures from the major closure forces that operate at tissue level. Altogether, my work brings new insights on the signalling and morphogenesis during dorsal closure.
4

Filopodial Activity of the Cardioblast Leading Edge in Drosophila

Syed, Raza Qanber 04 1900 (has links)
<p>I have put my half title as the main thesis title here. I would like to use that as the title displayed online.</p> / <p>The Drosophila heart arises from two bilateral rows of cardioblasts (CB) that migratedorsally towards the midline and contact their contralateral partners to form the dorsal vessel.Generally, migrating cells rely on the extensions at the leading edge domain. Like other migratingcells, we show that the leading edge of the CBs extends finger-like processes which might play arole in sensing guidance cues during guided migration. Expressing an mCherry-Moesin transgenein the CBs enabled us to characterise the dynamic nature and genetic requirements of thesefilopodial processes. While studying the role of filopodial activity during heart assembly weobserved that CBs extended cellular protrusions towards the internalizing amnioserosa cells.Filopodial activity is low during migration, and rises when the CBs are near the amnioserosacells. However, filopodial contacts are stabilized by interaction with contralateral CBs, not theamnioserosa cells. CB cell bodies can contact their contra lateral partners only after theamnioserosa is fully internalized. We propose that filopodia are generated in response to thepresence of sensory guidance molecules excreted by the amnioserosa cells.Robo/Slit signalling has been previously shown to play a role in CB migration, adhesionand lumen formation. Additionally, studies have shown that Robo/Slit signalling plays a role infilopodial extension in the Drosophila nervous system development. We observed that in embryosin which Robo signaling in the CBs was reduced or absent, the CBs were less active at the LE. Inaddition, the migration speed of CBs in mutant embryos was notably decreased. Based on theseresults, we hypothesize that Robo/Slit signaling plays a role in filopodial extensions.</p> / Master of Science (MSc)
5

Reprogrammation cellulaire et morphogenèse épithéliale pendant le développement embryonnaire chez la drosophile / Reprogramming and epithelial morphogenesis during drosophila embryo development

Roumengous, Solange 11 December 2015 (has links)
Les changements de forme et les mouvements des cellules constituant les tissus relèvent de la morphogenèse épithéliale. Dans les tissus segmentés les compartiments antérieurs et postérieurs représentent des domaines morphogénétiques indépendants constitués de lignées cellulaires distinctes et séparées par des barrières biophysiques. Le laboratoire a montré que lors de la fermeture dorsale de l’embryon de drosophile, certaines cellules des segments centraux de l’ectoderme, appelées « Cellules Mixer » (CMs), sont reprogrammées pour traverser la frontière segmentale dans un phénomène qui prend le nom de « mixing ». La reprogrammation des CMs est JNK dépendante induisant l’expression de novo du gène engrailed (en). La mise au point de nouveaux outils génétiques a permis de révéler le rôle de deux familles de gènes impliqués dans les mécanismes de reprogrammation et de mixing : le gène Polycomb (Pc) et les gènes Hox. La technique de DNA-FISH, qui analyse l’interaction entre Pc et le PRE d’en, a ainsi montré que la voie JNK induit l’expression de novo d’en par dé-répression de l’activité Pc dans les CMs. De manière intéressante l’analyse approfondie des mutants Pc a dévoilé que les gènes Hox abdominal-A (abdA) et Abdominal-B (AbdB) contrôlent le domaine du mixing. Des expériences de gain et perte de fonction ont par la suite confirmé le rôle positif d’abdA et le rôle négatif d’AbdB dans le mixing. En conclusion, l’ensemble des résultats obtenus ont permis de dévoiler la présence d’un réseau génétique composé de par JNK, en, Pc et les gènes Hox contrôlant les mécanismes de reprogrammation cellulaire et de remodelage des frontières segmentales au cours du développement normal. / Tissue morphogenesis relies on patterned cell shape changes and movements taking place in specific morphogenetic domains. In segmented tissues, anterior and posterior compartments represent independent morphogenetic domains which are made of distinct lineages separated by boundaries. We previously reported on a rare event leading to the exchange of specific ‘Mixer Cells’ (MCs) between compartments of the ectoderm. During dorsal closure, MCs, which are of anterior origin, cross the boundary to integrate the adjacent posterior compartment through de novo expression of the posterior determinant Engrailed (En). This reprograming process is dependent on JNK signalling and is restricted to the central abdominal region. Here, we show that JNK signalling represses Polycomb (Pc) expression and that loss of Pc leads to an absence of MCs reprogramming. FISH-DNA coupled to immunostaining further shows that MCs fate transition is accompanied by a release of the en promoter from the repressing Pc bodies. Interestingly, our genetic data reveal that spatial control of MCs reprograming depends on the activity of the Hox genes abdominal-A (abdA) and Abdominal-B (AbdB). In their respective domains, abd-A promotes mixing while abd-B behaves as a strong repressor, thus restricting cell mixing to the central abdominal region. Together, these results provide new insights into the mechanisms of developmental reprogramming, showing that segment boundary plasticity relies on regional control of cell remodelling involving a gene regulatory network composed of JNK, en, Pc, and Hox activities.
6

Morphogenesis in Drosophila melanogaster : an in vitro analysis

Scarborough, Julie January 2007 (has links)
The aim of this thesis was to investigate morphogenesis in the fruit fly Drosophila melanogaster using three in vitro tissue culture systems. Primary embryonic cultures derived from Drosophila melanogaster were used to study the effect of the moulting hormone ecdysone on cells in culture. The hypothesis was that the effect of ecdysone on these primary embryonic cells would parallel events which occur during metamorphosis in vivo and therefore the primary embryonic cultures could be used as an ‘in vitro’ model system. Transgenic fly lines expressing GFP were used to visualise and identify specific cell types and it was shown that cells in primary embryonic cultures respond to ecdysone morphologically. However due to the variability of cultures it was concluded that this culture system was not suitable for use as a model system. As defined cell types were observed the development of a protocol suitable for use with the primary embryonic culture system using dsRNA in order to demonstrate RNA interference was undertaken. Although this was unsuccessful, as cells in the primary embryonic cultures appeared to be resistant to dsRNA, some technical avenues remain to be explored. The Drosophila melanogaster cell line, Clone 8+, was used to investigate cell adhesion in tissue culture. Statistical analyses were carried out and it was established that derivatives of the parent cell line, Clone 8+, showed differential adhesion and proliferation characteristics. Analysis of microarray data was carried out in order to identify genes which may be responsible for the loss of cell adhesion in Clone 8+ cell lines and the potential roles of these genes in adhesion were discussed. A gene of interest, glutactin, was identified which may be responsible for loss of cell adhesion. Antibody staining was used to establish the expression of the protein glutactin in the Clone 8+ cell lines. The expression of glutactin suggested that the Clone 8+ cell line had maintained properties of the wing disc epithelial cell-type and disruption of cell polarity was considered as a possible mechanism. It was shown that f-actin colocalised with glutactin and the role of the cytoskeleton in glutactin secretion was discussed. It was concluded that glutactin was not responsible for loss of cell adhesion in the Clone 8+ cell lines. Further analysis of the microarray data revealed potential genes that could be responsible for the loss of cell polarity in the Clone 8+ cell lines and the possibility of cellular senescence was considered. It was hypothesised that the properties of adhesion and proliferation related to their ‘in vitro’ age. In the final investigation the movement of epithelial cells in Drosophila melanogaster third instar larval imaginal discs during morphogenesis was investigated. Firstly a lumen was identified in fixed imaginal disc tissue in association with cells expressing f-actin. This result was discussed in relation to the process of dorsal closure and wound healing. Further investigations involved live imaging of the dynamic process of evagination in the imaginal wing disc using transgenic flies expressing moesin-GFP. It was concluded that the lumen was not associated with the process of wound healing and it was concluded that the lumen appeared to be the mechanism directing peripodial epithelium contraction during morphogenesis of the imaginal wing disc. Dorsal closure and the process of invagination in relation to morphogenesis of the imaginal wing disc were discussed.

Page generated in 0.0416 seconds