• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 162
  • 49
  • 23
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 3
  • Tagged with
  • 583
  • 140
  • 114
  • 91
  • 83
  • 80
  • 76
  • 64
  • 63
  • 45
  • 45
  • 44
  • 40
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Réduction de la dose d'irradiation en tomodensitométrie de l'adulte

Tack, Denis 06 June 2005 (has links)
Le but de notre travail a été d’évaluer l’effet de la réduction de la dose d’irradiation en TDM multibarrette quant à la performance diagnostique, la confiance de l’observateur dans le diagnostic proposé, la capacité à suggérer un diagnostic alternatif dans quelques pathologies courantes et/ou caractérisées par des situations de faibles contrastes entre les structures anatomiques normales ou pathologiques. Nous avons donc comparé ces paramètres entre des TDM à doses réduites et à doses standard telles que couramment rapportées dans la littérature dans les circonstances suivantes :<p><p>•\ / Doctorat en sciences médicales / info:eu-repo/semantics/nonPublished
162

Cristallisation du transporteur ABC BmrA de Bacillus subtilis : développement d’une nouvelle méthode de dosage des détergents par Matrix-Assisted Laser Desorption Ionization (MALDI) / Crystallization of BmrA, bacterial ABC transporter : development of a new detergents dosage assay by Matrix-Assited Laser Desorption Ionization (MALDI)

Kilburg, Arnaud 15 September 2015 (has links)
Notre projet vise à déterminer la structure 3D du transporteur BmrA de Bacillus subtilis. La protéine a été purifiée dans six détergents différents. L'utilisation de foscholine 12, a conduit à cristalliser OmpF, une porine de la membrane externe d'E. coli. Nous montrons que les conditions de cristallisation influencent directement l'empilement cristallin d'OmpF. Le protocole de purification de BmrA, optimisé en utilisant du triton X100 à l'extraction puis un mélange β-D-dodecyl maltoside-cholate pour les étapes chromatographiques nous a permis d'obtenir à 4°C des cristaux, pour lesquels nous avons vérifié qu'ils sont constitués de BmrA. Ces cristaux ont permis d'obtenir un jeu complet jusqu'à 7 Å. Ces données de diffraction constituent une avancée significative pour résoudre à court terme la structure 3D de BmrA. Nous avons développé une nouvelle méthode de dosage des détergents qui est basée sur la détermination par spectrométrie de masse de type MALDI du ratio d'isotopes deutérés/ protonés. La méthode a été validée avec la FC12, le DDM, le β-OG, le LMNG, le CHAPS, le cholate et des détergents calix[4]aréniques, en mesurant la concentration de ces détergents dans différentes conditions d'extraction/purification, de concentration, dialyse et gel filtration, de différentes protéines membranaires. Cette méthode nous a permis (i) d'estimer la taille de la ceinture de détergent associée à BmrA et d'autres protéines membranaires (ii) de moduler cette taille en fonction de mélange de détergents et (iii) d'apporter des informations sur le comportement des complexes protéine-détergent / Our project aims to determine the 3D structure of BmrA from Bacillus subtilis. The protein was purified in six different detergents. Using foscholine 12, led to crystallize OmpF, an outer membrane porin of E. coli. We show that the crystallization conditions directly influence the crystal packing of OmpF. The BmrA purification protocol optimized by using Triton X100 at the extraction and a mixture β-D-dodecyl-maltoside cholate for chromatographic steps allowed us to get to 4°C crystals, for which we verified they consist of BmrA. These crystals have yielded full data to 7 Å. These diffraction data are a significant advance in the short term to resolve the 3D structure of BmrA. We have developed a new detergents dosage assay which is based on the determination by MALDI-type mass ratio of deuterated isotopes / protonated. The method was validated with the FC12, the DDM, the β-OG, the LMNG, CHAPS, cholate detergents and calix [4] aréniques by measuring the concentration of these detergents in different conditions of extraction/ purification, concentration, dialysis and gel filtration, of different membrane proteins. This method allowed us (i) to estimate the size of the detergent belt associated to BmrA and other membrane proteins (ii) to modulate this size in terms of the detergent mixture and (iii) to provide information on the behavior of complex protein-detergent
163

A Novel SMC-Like Protein Modulates C. Elegans Condensin Functions: A Dissertation

Chao, Lucy F. 25 March 2016 (has links)
Chromatin is organized dynamically to accommodate different biological processes. One of the factors required for proper chromatin organization is a group of complexes called condensins. Most eukaryotes have two conserved condensins (I and II) required for chromosome segregation. C. elegans has a third condensin (IDC) that specializes in dosage compensation, a process that down-regulates X gene dosage in XX hermaphrodites to match the dosage in XO males. How the three condensins are regulated is not well understood. Here, I present the discovery and characterization of a novel condensin regulator, SMCL-1. We identified SMCL-1 through purification of a MAP-tagged condensin subunit. Condensins are comprised of SMC ATPases and regulatory CAP proteins; SMCL-1 interacts most abundantly with condensin SMC subunits and resembles the ATPase domain of SMC proteins. Interestingly, the SMCL-1 protein has residues that differ from SMC consensus and potentially render SMCL-1 incapable of hydrolyzing ATP. Worms harboring smcl-1 deletion are viable and show no detectable phenotype. However, deleting smcl-1 in a condensin hypomorph mildly suppresses condensin I and IDC mutant phenotypes, suggesting that SMCL-1 functions as a negative regulator of condensin I and IDC. Consistent with this, overexpression of SMCL-1 leads to condensin loss-of-function phenotypes such as lethality, segregation defects and disruption of IDC localization on the X chromosomes. Homology searches based on the unique ATPase domain of SMCL-1 reveal that SMCL-1-like proteins are present only in organisms also predicted to have condensin IDC. Taken together, we conclude that SMCL-1 is a negative modulator of condensin functions and we propose a role for SMCL-1 in helping organisms adapt to having a third condensin by maintaining the balance among three condensin complexes.
164

The development of an oral single dose emulgel formulation for Pheroid® technology / Charlene Ethel Ludick

Ludick, Charlene Ethel January 2014 (has links)
Dosage forms have been developed over the years for various applications. The dosage form consists of the active drug in combination with pharmaceutical excipients. The pharmaceutical excipients solubilise, suspend, thicken, dilute, emulsify, stabilise, preserve, colour and flavour medicinal agents into efficacious and appealing dosage forms. The dosage form under investigation in this study is of the oral type. The Pheroid® is a unique drug delivery system which consists of an oil-in-water emulsion system. Emulsion based drug systems provide a suitable medium for the delivery of both hydrophobic and hydrophilic drugs which can be incorporated into its oil or water phase for delivery to the site of action. These advantages make them more efficient as dosage form. Emulgels are either emulsion of oil-in-water or water-in-oil type, which is gelled by mixing with gelling agents. Incorporation of emulsion into gel increases its stability and makes it a dual control release system. The presence of the gel phase makes it a non-greasy formulation which favours good patient compliance. A strategy followed to improve the stability of the emulgel system is the packaging of the formula into single dose sachets to protect the product against physical and chemical breakdown during patient usage. All factors such as selection of gelling agent, preservatives and formulation methods influencing the stability and efficacy of Pheroid® emulgel are discussed. In this study, three different emulsifiers were added to the formula and the analysis of visual appearance, pH measurements, rheological studies, light microscopy and confocol laser scanning microscopy (CLSM) will provide an insight to the potential usage of emulgel as drug delivery system. A range of para-hydroxybenzoate esters was tested in the Pheroid® emulgel and the most suitable candidate chosen for further accelerated stability testing. It was thus possible to prepare a single dose emulgel with Carbopol® 934P (0.2% w/v) as an emulsifier, with Nipastat® (0.175% w/v) and PG (10% v/v) as preservatives into a stable dosage form suitable for further product development. / PhD (Pharmaceutics), North-West University, Potchefstroom Campus, 2014
165

The development of an oral single dose emulgel formulation for Pheroid® technology / Charlene Ethel Ludick

Ludick, Charlene Ethel January 2014 (has links)
Dosage forms have been developed over the years for various applications. The dosage form consists of the active drug in combination with pharmaceutical excipients. The pharmaceutical excipients solubilise, suspend, thicken, dilute, emulsify, stabilise, preserve, colour and flavour medicinal agents into efficacious and appealing dosage forms. The dosage form under investigation in this study is of the oral type. The Pheroid® is a unique drug delivery system which consists of an oil-in-water emulsion system. Emulsion based drug systems provide a suitable medium for the delivery of both hydrophobic and hydrophilic drugs which can be incorporated into its oil or water phase for delivery to the site of action. These advantages make them more efficient as dosage form. Emulgels are either emulsion of oil-in-water or water-in-oil type, which is gelled by mixing with gelling agents. Incorporation of emulsion into gel increases its stability and makes it a dual control release system. The presence of the gel phase makes it a non-greasy formulation which favours good patient compliance. A strategy followed to improve the stability of the emulgel system is the packaging of the formula into single dose sachets to protect the product against physical and chemical breakdown during patient usage. All factors such as selection of gelling agent, preservatives and formulation methods influencing the stability and efficacy of Pheroid® emulgel are discussed. In this study, three different emulsifiers were added to the formula and the analysis of visual appearance, pH measurements, rheological studies, light microscopy and confocol laser scanning microscopy (CLSM) will provide an insight to the potential usage of emulgel as drug delivery system. A range of para-hydroxybenzoate esters was tested in the Pheroid® emulgel and the most suitable candidate chosen for further accelerated stability testing. It was thus possible to prepare a single dose emulgel with Carbopol® 934P (0.2% w/v) as an emulsifier, with Nipastat® (0.175% w/v) and PG (10% v/v) as preservatives into a stable dosage form suitable for further product development. / PhD (Pharmaceutics), North-West University, Potchefstroom Campus, 2014
166

Radiation distribution in a private neurological theatre during invasive back pain management procedures

Van der Merwe, Belinda January 2008 (has links)
Thesis (M. Tech.) -- Central University of Technology, Free State, 2008 / The aim of the study was to determine radiation dose levels around the theatre table, on either side of the C-Arm, in order to establish if the radiation dose received by staff during back pain procedures fell within the limits set by the International Commission of Radiological Protection (ICRP). The question that arose from this goal was whether the stance of staff, in relation to the x-ray tube side of the C-Arm, influenced radiation dose levels. In order to apply the ALARA principle, the possibility of lowering the radiation dose in the neurological theatre was explored. The measurement methodology of the study was twofold: measurements were executed by means of TLD meters, as well as with an ionisation chamber. TLD meters were placed on the patient, the neurosurgeon and the radiographer during back pain procedures, and, more specifically, during fluoroscopy, to record the doses with the Image Intensifier (II) above the table as well as with the x-ray tube above the table, at the pelvis and the chest height of the staff. Ionisation chamber measurements were recorded in 25cm intervals around the theatre table with a phantom and the C-Arm positioned in the PA, oblique and lateral positions at 110cm and 133cm heights from the floor. The TLD results indicated that, when compared to the Image Intensifier side, the radiation dose was higher on the x-ray tube side of the C-Arm. The radiation dose was higher at the height closest to the x-ray source. The radiation dose received by the patient was higher with the x-ray tube positioned above the table (PA). The radiation dose to the surgeon’s hand and body was higher with the x-ray tube positioned above the table (PA). Radiation dose levels with the x-ray tube above the table during back pain procedures in the current theatre exceeded the occupational annual recommendation of 500mSv to the neurosurgeons hands, as recommended by the ICRP. The opposite is true with the II positioned above the table. The research question was answered positively in that the x-ray tube under couch orientation has the potential to limit dose levels during back pain procedures. The measurement values resulted in a proposed protocol in terms of positioning of staff and orientation of the C-Arm in order to apply the ALARA principle during back pain procedures. Constant revision of protocols is the responsibility of the radiographer in order to guarantee that the ALARA principle is implemented in every unique situation.
167

A coarse mesh transport method for photons and electrons in 3-D

Hayward, Robert M. 09 April 2013 (has links)
A hybrid stochastic-deterministic method, COMET-PE, is developed for dose calculation in radiotherapy. Fast, accurate dose calculation is a key component of successful radiotherapy treatment. To calculate dose, COMET-PE solves the coupled Boltzmann Transport Equations for photons and electrons. The method uses a deterministic iteration to compose response functions that are pre-computed using Monte Carlo. Thus, COMET-PE takes advantage of Monte Carlo physics without incurring the computational costs typically required for statistical convergence. This work extends the method to 3-D problems with realistic source distributions. Additionally, the performance of the deterministic solver is improved, taking advantage of both shared-memory and distributed-memory parallelism to enhance efficiency. To verify the method’s accuracy, it is compared with the DOSXYZnrc (Monte Carlo) method using three different benchmark problems: a heterogeneous slab phantom, a water phantom, and a CT-based lung phantom. For the slab phantom, all errors are less than 1.5% of the maximum dose or less than 3% of local dose. For both the water phantom and the lung phantom, over 97% of voxels receiving greater than 10% of the maximum dose pass a 2% (relative error) / 2 mm (distance-to-agreement) test. Timing comparisons show that COMET-PE is roughly 10-30 times faster than DOSXYZnrc. Thus, the new method provides a fast, accurate alternative to Monte Carlo for dose calculation in radiotherapy treatment planning.
168

Monte Carlo dose calculations in quality assurance for IMRT of head and neck cancers

Tang, Nin-fai Francis., 鄧年輝. January 2008 (has links)
published_or_final_version / Clinical Oncology / Doctoral / Doctor of Philosophy
169

Implications of plasticization on the properties of hot-melt extruded oral dosage forms

Schilling, Sandra Ursula 27 May 2010 (has links)
The influence of plasticization and other formulation factors on the properties of hot-melt extruded dosage forms for the controlled release of water-soluble active compounds was investigated. Citric acid monohydrate was demonstrated to function as a solid-state plasticizer in hot-melt extruded Eudragit® RS PO tablets and in cast films when concentrations below the compatibility limit were employed. Melting of the organic acid and solubilization in the polymer during extrusion were necessary to observe the plasticizing effect. The release rate of diltiazem hydrochloride, used as a high-melting, water-soluble model drug, from melt extruded Eudragit® RS PO matrix tablets increased and became independent of the original drug particle size in the presence of citric acid monohydrate. Thermal analysis of physical mixtures demonstrated that citric acid promoted drug melting during extrusion by interaction and melting point depression. Diltiazem hydrochloride remained amorphous in the final dosage form, and leaching of citric acid monohydrate enhanced drug diffusion by increasing the matrix porosity. Delayed-release matrix pellets with particle sizes below one mm were prepared by hot-melt extrusion, and the influence of the matrix forming polymer and the type and level of plasticizer on the processibility and release properties was investigated. Pellets complied with the USP requirement for delayed release articles to release less than 10% drug at pH 1.2 after 2 hours when plasticized Eudragit® S100 was used as the release-controlling material. High levels of efficient plasticizers had to be employed to decrease the polymeric melt viscosity, increase the process yield and enable extrusion at moderate temperatures to avoid instabilities during processing and storage. The aqueous solubility of the plasticizer further impacted the drug release rate in acid. A novel application of hot-melt extrusion for the preparation of monolithic matrices comprising enteric coated particles was studied. The influence of the mechanical strength of the multiparticulates, pellet loading and nature of the hydrophilic carrier material on the preservation of the delayed-release properties after extrusion was investigated. Soft particles coated with brittle films remained intact when low-melting carriers that did not solubilize the enteric film during extrusion were used, and the dissolution profile was stable over one year. / text
170

The development and evaluation of the Objective Structured Dispensing Examination (OSDE) for use in an undergraduate pharmacy training programme.

Frieslaar, Denise Eleanor January 2004 (has links)
No description available.

Page generated in 0.0239 seconds