Spelling suggestions: "subject:"dosage compensation, 1genetic"" "subject:"dosage compensation, cogenetic""
1 |
X chromosome upregulation and its biological significance in mammals /Nguyen, Di Kim. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 77-87).
|
2 |
Genomic and Peptidomic Characterization of the Developing Avian Brain /Scholz, Birger, January 2008 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2008. / Härtill 4 uppsatser.
|
3 |
A tale of two x-linked genes : gene expression, localization and the Ohno hypothesis /Adler, David A., January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (leaves [54]-67).
|
4 |
A Novel SMC-Like Protein Modulates C. Elegans Condensin Functions: A DissertationChao, Lucy F. 25 March 2016 (has links)
Chromatin is organized dynamically to accommodate different biological processes. One of the factors required for proper chromatin organization is a group of complexes called condensins. Most eukaryotes have two conserved condensins (I and II) required for chromosome segregation. C. elegans has a third condensin (IDC) that specializes in dosage compensation, a process that down-regulates X gene dosage in XX hermaphrodites to match the dosage in XO males. How the three condensins are regulated is not well understood. Here, I present the discovery and characterization of a novel condensin regulator, SMCL-1.
We identified SMCL-1 through purification of a MAP-tagged condensin subunit. Condensins are comprised of SMC ATPases and regulatory CAP proteins; SMCL-1 interacts most abundantly with condensin SMC subunits and resembles the ATPase domain of SMC proteins. Interestingly, the SMCL-1 protein has residues that differ from SMC consensus and potentially render SMCL-1 incapable of hydrolyzing ATP. Worms harboring smcl-1 deletion are viable and show no detectable phenotype. However, deleting smcl-1 in a condensin hypomorph mildly suppresses condensin I and IDC mutant phenotypes, suggesting that SMCL-1 functions as a negative regulator of condensin I and IDC. Consistent with this, overexpression of SMCL-1 leads to condensin loss-of-function phenotypes such as lethality, segregation defects and disruption of IDC localization on the X chromosomes. Homology searches based on the unique ATPase domain of SMCL-1 reveal that SMCL-1-like proteins are present only in organisms also predicted to have condensin IDC. Taken together, we conclude that SMCL-1 is a negative modulator of condensin functions and we propose a role for SMCL-1 in helping organisms adapt to having a third condensin by maintaining the balance among three condensin complexes.
|
5 |
Computational Approaches for the Analysis of Chromosome Conformation Capture Data and Their Application to Study Long-Range Gene Regulation: A DissertationLajoie, Bryan R. 10 February 2016 (has links)
Over the last decade, development and application of a set of molecular genomic approaches based on the chromosome conformation capture method (3C), combined with increasingly powerful imaging approaches have enabled high resolution and genome-wide analysis of the spatial organization of chromosomes. The aim of this thesis is two-fold; 1), to provide guidelines for analyzing and interpreting data obtained from genome-wide 3C methods such as Hi-C and 3C-seq and 2), to leverage the 3C technology to solve genome function, structure, assembly, development and dosage problems across a broad range of organisms and disease models.
First, through the introduction of cWorld, a toolkit for manipulating genome structure data, I accelerate the pace at which *C experiments can be performed, analyzed and biological insights inferred. Next I discuss a set of practical guidelines one should consider while planning an experiment to study the structure of the genome, a simple workflow for data processing unique to *C data and a set of considerations one should be aware of while attempting to gain insights from the data.
Next, I apply these guidelines and leverage the cWorld toolkit in the context of two dosage compensation systems. The first is a worm condensin mutant which shows a reduction in dosage compensation in the hermaphrodite X chromosomes. The second is an allele-specific study consisting of genome wide Hi-C, RNA-Seq and ATAC-Seq which can measure the state of the active (Xa) and inactive (Xi) X chromosome. Finally I turn to studying specific gene – enhancer looping interactions across a panel of ENCODE cell-lines.
These studies, when taken together, further our understanding of how genome structure relates to genome function.
|
Page generated in 0.1189 seconds