• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heat transfer in upward flowing two-phase gas-liquid mixtures : an experimental study of heat transfer in two-phase gas-liquid mixtures flowing upwards in a vertical tube with liquid phase being driven by a pump or air injection

Alahmad, Malik I. N. January 1987 (has links)
An experimental investigation has been carried out to study the heat transfer in a two-phase two-component mixture flowing upward inside a 1" double pipe heat exchanger. The heat transfer coefficient was measured using either air to lift the liquid (air-lift system) or a mechanical pump. The heat transfer coefficient results have been extensively studied and compared with other workers' results. An attempt was made to correlate the present heat transfer data in dimensionless correlations. Possible factors affecting the two-phase heat transfer coefficient have been studied with special attention being given to the fluid properties, particularly the liquid viscosity. Experiments were also carried out to investigate the effect of solid particles added to a liquid flow on the measured heat transfer coefficient. The present investigation was carried out using air as the gas-phase ranging from 2x 10-5 up to 80 x 10-5 m3/s. Liquids used were water and glycerol solutions with viscosity ranging from 0.75 up to 5.0 C. P. and flowrates between 4x 10-5 and 25 x 10-5 m3/s. Void fraction and pressure drop were also measured during the heat transfer process. Flow pattern in gas-liquid mixture was investigated in a perspex tube of identical dimensions to the heat exchanger tube.
2

Heat transfer in upward flowing two-phase gas-liquid mixtures. An experimental study of heat transfer in two-phase gas-liquid mixtures flowing upwards in a vertical tube with liquid phase being driven by a pump or air injection.

Alahmad, Malik I.N. January 1987 (has links)
An experimental investigation has been carried out to study the heat transfer in a two-phase two-component mixture flowing upward inside a 1" double pipe heat exchanger. The heat transfer coefficient was measured using either air to lift the liquid (air-lift system) or a mechanical pump. The heat transfer coefficient results have been extensively studied and compared with other workers' results. An attempt was made to correlate the present heat transfer data in dimensionless correlations. Possible factors affecting the two-phase heat transfer coefficient have been studied with special attention being given to the fluid properties, particularly the liquid viscosity. Experiments were also carried out to investigate the effect of solid particles added to a liquid flow on the measured heat transfer coefficient. The present investigation was carried out using air as the gas-phase ranging from 2x 10-5 up to 80 x 10-5 m3/s. Liquids used were water and glycerol solutions with viscosity ranging from 0.75 up to 5.0 C. P. and flowrates between 4x 10-5 and 25 x 10-5 m3/s. Void fraction and pressure drop were also measured during the heat transfer process. Flow pattern in gas-liquid mixture was investigated in a perspex tube of identical dimensions to the heat exchanger tube.
3

Výběr vhodného uspořádání toku pracovních látek s laminárním režimem proudění v trubkovém chladiči / Selection of suitable fluid flow directions in laminar flow tubular cooler

Krobot, David January 2009 (has links)
This master’s thesis is devoted to problematic of selection of suitable flow directions in double pipe heat exchanger. First chapter is oriented to the construction of tube heat exchangers. It is also discussed impact of construction solution to the flow character and changing of his process parameters. The difference between parallel and countercurrent flow is also occurred in this parts. The next chapter is focused to the basics of heat-hydraulic calculations of heat exchanger. This also means explanation of ways of heat transfer and heat exchanger function. There are told about specific access to the solving problem of fluid laminar flow. The third chapter is detailed focused to the calculating of heat exchanger. At first is discussed factors, which have impact to the flow character. Next are detailed descriptions of design and controlling calculations, including more alternative ways to solve it. Next chapter exploit those results for deciding, which flow arrangement will be better for given case. Last chapter contain realization and reformulating of process heat exchanger calculating to the program code in Maple. There is also description of used algorithms and operating with them, so any user could be able to work with it. In this master’s thesis are used many examples from attached programs on different parts.
4

Algoritmus automatického výběru vhodného typu zařízení z databáze výměníků tepla / Algorithm for automatic selection of suitable equipment type from heat exchanger database

Havlů, Michal January 2009 (has links)
Thesis is devoted to development of an database algorithm for selection (or necking selection) of suitable type of heat exchanger for given industrial application. Database creates a part of multipurpose calculation system containing three individual modules: (i) module for selection (or necking selection) of type of heat exchanger for given application, (ii) module for thermal-hydraulic design or rating of heat exchanger, (iii) module for calculation of investments and operating cost. Thesis describes details of method for selection of suitable heat exchanger type for given application and presents and discuss individual criteria for selection process which influence values in tables of priorites for given equipment. These tables are unavoible part of selection algorithm. Details of software application of selection algorithm are also presented in the thesis. Description of behaviour of individual types of heat exchanger creates important part of thesis. Practical application of developed selection algorithm is demonstrated on several industrial examples.

Page generated in 0.0851 seconds