• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of secondary and micronutrients for soybean and wheat production

Widmar, Aaron January 1900 (has links)
Master of Science / Department of Agronomy / Dorivar Ruiz Diaz / The application of micronutrients to increase yields has become more popular with increased commodity prices and higher yielding crops. Two studies were completed evaluating secondary and micronutrient for soybean (Glycine max [L.] Merr.) and wheat (Triticum aestivum).The objective of the first study was to evaluate the response of soybean, under a double crop system after wheat, to soil-and foliar-applied macro and micronutrients. Macronutrients (N, P, K) were applied at 22 kg ha[superscript]-[superscript]1, micronutrients (Fe, Mn, Zn) were soil applied at 11 kg ha[superscript]-[superscript]1and S was applied at 22 kg ha[superscript]-[superscript]1. Plant response parameters were evaluated including changes in nutrient concentration, and seed yield response. Tissue samples were collected at the respective R1 growth stage. Samples were analyzed for the nutrients applied with the fertilizer treatments. Soybean seed yield slightly responded to soil-applied S, Mn, and Zn. When micronutrients were foliar-applied, seed yield was significantly decreased. The second study evaluated the application of S and micronutrients to winter wheat. The objectives were to evaluate the wheat response to sulfur and micronutrient fertilization and evaluate soil testing and tissue analysis as diagnostic tools. Fertilizer treatments consisted of sulfur, iron, manganese, zinc, boron, copper. All of the micronutrients were sulfate-based products and the sulfur treatments were applied as gypsum. Fertilizer treatments were applied as topdress in early spring. Soil samples were collected before fertilizer application and after harvest. Flag leaf samples were collected and analyzed for the nutrients applied with the fertilizer treatments. Significant increases in tissue concentration were observed when Zn, B, and S were applied. Significant increases in soil test Zn, Cu, B, and S were observed compared to the control treatment. Despite the increases in soil test concentration across locations, no significant increases in yield by any of the nutrients or combination of nutrients were observed.
2

Influence of Several Herbicides on Visual Injury, Leaf Area Index, and Yield of Glyphosate-Tolerant Soybean <I>(Glycine max)</I>

Johnson, Bryan Fisher 09 May 2001 (has links)
The occasional failure of glyphosate to control all weeds throughout the entire growing season has prompted growers to sometimes use herbicides other than glyphosate on glyphosate-tolerant soybean. Field studies were conducted in 1999 and 2000 to investigate potential crop injury from several herbicides on glyphosate-tolerant soybean, and to determine the relationship between soybean maturity, planting date, and herbicide treatment on soybean injury, leaf area index (LAI), and yield. Three glyphosate-tolerant soybean cultivars representing maturity groups III, IV and V were planted at dates representing the full-season and double-crop soybean production systems used in Virginia. Within each cultivar and planting date, 15 herbicide treatments, in addition to a control receiving only metolachlor preemergence, were applied to cause multiple levels of crop injury. Results of this study indicate that glyphosate-tolerant soybean generally recovered from early-season herbicide injury and LAI reductions; however, reduced yield occurred with some treatments. Yield reductions were more common in double-crop soybean than in full-season soybean. In full-season soybean, most yield reductions occurred only in the early maturing RT-386 cultivar. These yield reductions may be attributed to the reduced developmental periods associated with early maturing cultivars and double-crop soybean that often lead to reduced vegetative growth and limited LAI. Additional reductions of LAI by some herbicide treatments on these soybean may have coincided with yield reductions; however, reduced LAI did not occur with all yield reducing treatments. Therefore, soybean LAI response to herbicide treatments does not always accurately indicate the potential detrimental effects of herbicides on soybean yield. Further, yield reductions associated with herbicide applications occurred, although soybean sometimes produced leaf area exceeding the critical LAI level of 3.5 to 4.0 which is the minimum LAI needed for soybean to achieve maximum yield. / Master of Science

Page generated in 0.0529 seconds