• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 19
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 83
  • 83
  • 83
  • 59
  • 51
  • 26
  • 23
  • 20
  • 18
  • 16
  • 16
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Regulation of DNA Double Strand Break Response

Chen, Chen January 2014 (has links)
<p>To ensure genomic integrity, dividing cells implement multiple checkpoint pathways during the course of the cell cycle. In response to DNA damage, cells may either halt the progression of the cycle (cell cycle arrest) or undergo apoptosis. This choice depends on the extent of damage and the cell's capacity for DNA repair. Cell cycle arrest induced by double-stranded DNA breaks relies on the activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell cycle effectors (e.g., Chk2 and p53) to inhibit cell cycle progression. ATM is an S/T-Q directed kinase that is critical for the cellular response to double-stranded DNA breaks. Following DNA damage, ATM is activated and recruited to sites of DNA damage by the MRN protein complex (Mre11-Rad50-Nbs1 proteins) where ATM phosphorylates multiple substrates to trigger a cell cycle arrest. In cancer cells, this regulation may be faulty and cell division may proceed even in the presence of damaged DNA. We show here that the RSK kinase, often elevated in cancers, can suppress DSB-induced ATM activation in both Xenopus egg extracts and human tumor cell lines. In analyzing each step in ATM activation, we have found that RSK disrupts the binding of the MRN complex to DSB DNA. RSK can directly phosphorylate the Mre11 protein at Ser 676 both in vitro and in intact cells and can thereby inhibit loading of Mre11 onto DSB DNA. Accordingly, mutation of Ser 676 to Ala can reverse inhibition of the DSB response by RSK. Collectively, these data point to Mre11 as an important locus of RSK-mediated checkpoint inhibition acting upstream of ATM activation.</p><p>The phosphorylation of Mre11 on Ser 676 is antagonized by phosphatases. Here, we screened for phosphatases that target this site and identified PP5 as a candidate. This finding is consistent with the fact that PP5 is required for the ATM-mediated DNA damage response, indicating that PP5 may promote DSB-induced, ATM-dependent DNA damage response by targeting Mre11 upstream of ATM.</p> / Dissertation
12

Identification of pre-synaptic processing proteins from Bacteroides fragilis

Parry, Frances Louise January 2011 (has links)
The repair of DNA double-strand breaks (DSBs) is required for the survival of all organisms. In bacteria, DNA DSBs can occur during normal housekeeping processes such as DNA replication or by exogenous damage due to chemicals or radiation. DSBs will compromise the integrity of the genome if left un-repaired, and can be fatal to an organism. Repair of DSBs by homologous recombination (HR) replicates missing chromosomal regions before joining of the separated DNA ends. In Escherichia coli the HR repair steps are; pre-synapsis, synapsis and post-synapsis. In the pre-synaptic stage a DSB is processed into a 3′ single-strand overhang, the substrate required for strand invasion in the synapsis stage and the eventual repair of the DSB. At present there are three identified pre-synapsis systems involved in recombination in bacteria; represented by the AdnAB, AddAB and the RecBCD protein complexes. Each system functions in a similar manner but differ in the physical composition of the machinery. This project investigated the pre-synaptic system of Bacteroides fragilis NCTC9343. Genes encoding putative pre-synapsis proteins were initially identified through analysis of the NCTC9343 genome. The function of these proteins was investigated in vivo by rescue of a repair-deficient strain of E. coli. This demonstrated that Bacteroides fragilis encodes a two component system, where both genes products are required to work in concert for pre-synaptic processing of DSBs. The identified genes were BF2192 and BF2191, and have been renamed addA and addB, respectively. To further examine the role of the AddAB proteins in DSB repair, a Bacteroides fragilis strain with a deletion of addAB was constructed and shown to be extremely sensitive to DNA damaging agents. The AddAB complex was purified and found to be an ATP-dependant helicase and exonuclease that acted on double-stranded DNA ends. In conclusion, this project has identified the proteins involved in pre-synaptic processing of DSBs in B. fragilis NCTC9343, consisting of AddAB homologues, and shown their protective role in repair of DNA damage.
13

DNA synthesis during double-strand break repair in Escherichia coli

Azeroglu, Benura January 2015 (has links)
Efficient and accurate repair of DNA double strand breaks (DSBs) is required to maintain genomic stability in both eukaryotes and prokaryotes. In Escherichia coli, DSBs are repaired by homologous recombination (HR). During this process, DNA synthesis needs to be primed and templated from an intact homologous sequence to restore any information that may have been lost on the broken DNA molecule. Two critical late stages of the pathway are repair DNA synthesis and the processing of Holliday junctions (HJs). However, our knowledge of the detailed mechanisms of these steps is still limited. Our laboratory has developed a system that permits the induction of a site-specific DSB in the bacterial chromosome. This break forms in a replication dependent manner on one of the sister chromosomes, leaving the second sister chromosome intact for repair by HR. Unlike previously available systems, the repairable nature of these breaks has made it possible to physically investigate the different stages of DNA double-strand break repair (DSBR) in a chromosomal context. In this thesis, I have addressed some fundamental questions relating to repair DNA synthesis and processing of HJs by using a combination of mutants defective in specific biochemical reactions and an assay that I have developed to detect repair DNA synthesis, using a polar termination sequence (terB). First, by using terB sites located at different locations around the break point, it was shown that the DnaB-dependent repair forks are established in a coordinated manner, meaning that the collision of the repair forks occurs between two repair DNA synthesis initiation sites. Second, DSBR was shown to require the PriB protein known to transduce the DNA synthesis initiation signal from PriA protein to DnaT. Conversely, the PriC protein (known as an alternative to PriB in some reactions) was not required in this process. PriB was also shown to be required to establish DnaB-dependent repair synthesis using the terB assay. Third, the establishment and termination of repair DNA synthesis by collision of converging repair forks were shown to occur independently of HJ resolution. This conclusion results from the comparison of the viability of single and double mutants, deficient in either the establishment of DNA synthesis, HJ resolution or in both reactions, subjected to DSBs and from the study of the DNA intermediates that accumulated in these mutants as detected by two-dimensional gel electrophoresis. Fourth, the role of RecG protein during DSB repair was investigated. Solexa sequencing analyses showed that recG null mutant cells undergoing DSBs accumulate more DNA around the break point (Mawer and Leach, unpublished data). This phenomenon was further investigated by two different approaches. Using terB sites in different locations around the break point and ChIP-Seq analyses to investigate the distribution of RecA in a recG null mutant demonstrating that the establishment of repair forks depends on the presence of RecG. Further studies using PriA helicase-dead mutant showed that the interplay between RecG and PriA proteins is essential for the establishment of correctly oriented repair forks during DSBR. As a whole, this work provides evidence on the coordinated nature of the establishment and termination of DNA synthesis during DSBR and how this requires a correct interplay between PriA-PriB and RecG. A new adapted model of homologous recombination is presented.
14

Intermediates of DNA double strand break repair in Escherichia coli

Mawer, Julia Sofia Pamela January 2012 (has links)
A DNA double-strand break (DSB) is a severe form of DNA damage. In fastgrowing cells, DSBs are commonly repaired by homologous recombination (HR) and in E. coli they are exclusively repaired by this mechanism. Failure to accurately repair DSBs can lead to genomic instability. Characterising the DNA intermediates formed during DSB repair by HR is key to understanding this process. A system for inducing a site-specific DSB in the E. coli chromosome has previously been described (Eykelenboom et al., 2008). Here, this system has been used to determine the nature of the intermediates of the repair. It was shown that in a Rec+ background the repair process is rapid and efficient. By contrast, in a ruvAB mutant, which is defective for the Holliday junction (HJ) migration and cleavage complex, RuvABC, HJs are accumulated on both sides of the breakpoint. Replication forks also accumulate at defined positions from the DSB, indicating that unresolved HJs are a barrier to efficient replication that is associated with the repair. This suggests that the resolution of HJs needs to occur prior to the establishment of DNA synthesis. Despite the accumulation of HJs in a ruvAB mutant, cell survival occurs when DSBs are induced for short periods, suggesting that HJs can be resolved in a RuvAB-independent manner. In contrast, the RecG helicase is essential for survival. In a recG mutant, replication forks but not HJs are detected in the region of DSB repair. In a ruvAB recG mutant, intermediates in this region are lost. These observations are consistent with a role of RecG in the stabilisation and maturation of D-loops and not the resolution of Holliday junctions. Nevertheless, an additional role for RecG in later stages of repair cannot yet be excluded. This work provides a solid framework for the further study of DSB repair in E. coli.
15

PROCESSING OF 3′-BLOCKED DNA DOUBLE-STRAND BREAKS BY TYROSYL-DNA PHOSPHODIESTERASE 1, ARTEMIS AND POLYNUCLEOTIDE KINASE/ PHOSPHATASE

Kawale, Ajinkya S 01 January 2018 (has links)
DNA double-strand breaks (DSBs) containing unligatable termini are potent cytotoxic lesions leading to growth arrest or cell death. The Artemis nuclease and tyrosyl-DNA phosphodiesterase (TDP1) are each capable of resolving protruding 3′-phosphoglycolate (PG) termini of DNA double-strand breaks (DSBs). Consequently, a knockout of Artemis and a knockout/knockdown of TDP1 rendered cells sensitive to the radiomimetic agent neocarzinostatin (NCS), which induces 3′-PG-terminated DSBs. Unexpectedly, however, a knockdown or knockout of TDP1 in Artemis-null cells did not confer any greater sensitivity than either deficiency alone, indicating a strict epistasis between TDP1 and Artemis. Moreover, a deficiency in Artemis, but not TDP1, resulted in a fraction of unrepaired DSBs, which were assessed as 53BP1 foci. Conversely, a deficiency in TDP1, but not Artemis, resulted in a dramatic increase in dicentric chromosomes following NCS treatment. An inhibitor of DNA-dependent protein kinase, a key regulator of the classical nonhomologous end joining (C-NHEJ) pathway sensitized cells to NCS but eliminated the sensitizing effects of both TDP1 and Artemis deficiencies. Moreover, Polynucleotide Kinase/ Phosphatase (PNKP) is known to process 3′-phosphates and 5′-hydroxyls during DSB repair. PNKP-deficiency sensitized both HCT116 and HeLa cells to 3′-phosphate ended DSBs formed upon radiation and radiomimetic drug treatment. The increased cytotoxicity in the absence of PNKP was synonymous with persistent, un-rejoined 3′-phosphate-ended DSBs. However, DNA-PK deficiency sensitized PNKP-/- cells to low doses of NCS suggesting that, in the absence of PNKP, alternative enzyme(s) can remove 3′-phosphates in a DNA-PK-dependent manner. These results suggest that TDP1 and Artemis perform different functions in the repair of terminally blocked DSBs by the C-NHEJ pathway, and that whereas an Artemis deficiency prevents end joining of some DSBs, a TDP1 deficiency tends to promote DSB mis-joining. In addition, loss of PNKP significantly sensitizes cells to 3′-phosphate-ended DSBs due to a defect in 3′-dephosphorylation.
16

Response of Human Hematopoietic Cells to DNA Double-strand Breaks

Trottier, Magan 16 February 2010 (has links)
Maintenance of hematopoiesis depends upon rare hematopoietic stem cells (HSCs), which can persist over an organism’s lifetime. It is conceivable that they must maintain a high degree of genetic stability; otherwise recurring exposure to genotoxins and accumulation of genetic changes could result in genomic instability and malignancy or cell death. We have focused on the response of HSCs and primitive hematopoietic cells to highly toxic DNA double-strand breaks (DSBs). Using assays to detect break rejoining and kinetics of early DSB response foci, we determined that non-cycling human HSC-containing cells display delayed break rejoining kinetics and persistent γH2AX and 53BP1 foci compared to cycling counterparts, more differentiated hematopoietic cells and human primary fibroblasts. In contrast, when stimulated to cycle, these HSC-containing cells are quite efficient at repairing breaks and resolving foci. These data suggest that the DNA damage response may be unusually prolonged in non-cycling primitive hematopoietic cells.
17

Response of Human Hematopoietic Cells to DNA Double-strand Breaks

Trottier, Magan 16 February 2010 (has links)
Maintenance of hematopoiesis depends upon rare hematopoietic stem cells (HSCs), which can persist over an organism’s lifetime. It is conceivable that they must maintain a high degree of genetic stability; otherwise recurring exposure to genotoxins and accumulation of genetic changes could result in genomic instability and malignancy or cell death. We have focused on the response of HSCs and primitive hematopoietic cells to highly toxic DNA double-strand breaks (DSBs). Using assays to detect break rejoining and kinetics of early DSB response foci, we determined that non-cycling human HSC-containing cells display delayed break rejoining kinetics and persistent γH2AX and 53BP1 foci compared to cycling counterparts, more differentiated hematopoietic cells and human primary fibroblasts. In contrast, when stimulated to cycle, these HSC-containing cells are quite efficient at repairing breaks and resolving foci. These data suggest that the DNA damage response may be unusually prolonged in non-cycling primitive hematopoietic cells.
18

The Molecular Structures of Recombination Intermediates in Yeast

Mitchel, Katrina January 2012 (has links)
<p>The genetic information necessary for the survival and propagation of a species is contained within a physical structure, DNA. However, this molecule is sensitive to damage arising from both exogenous and endogenous sources. DNA damage can prevent metabolic processes such as replication and transcription; thus, systems to bypass or repair DNA lesions are essential. One type of lesion in particular - the double strand break (DSB) - is extremely dangerous as inappropriate repair of DSBs can lead to deletions, mutations and rearrangements. Homologous recombination (HR) uses a template with sequence homology to the region near the DSB to restore the damaged molecule. However, this high-fidelity pathway can contribute to genome instability when recombination occurs between diverged substrates. To further our understanding of the regulation of HR during vegetative growth, we have used the budding yeast Saccharomyces cerevisiae as a model system and a plasmid-based assay to model repair of a DSB. In the first part of this work, the molecular structures of noncrossover (NCO) and crossover (CO) products of recombination were examined. While the majority of NCOs had regions of heteroduplex DNA (hDNA) on one side of the gap in the repaired allele and no change to the donor allele, most COs had two tracts of hDNA. They were present on opposite sides of the gap, one in each allele. Our results suggest that the majority of NCOs are generated through synthesis-dependent strand annealing (SDSA), and COs are the result of constrained cleavage of a Holliday junction (HJ) intermediate. To clarify the mechanisms regulating NCO production, the effects of three DNA helicases - Mph1, Sgs1 and Srs2 - on the structures of NCO events were examined. All three helicases promote NCO formation by SDSA, but Sgs1 and Srs2 also assist in NCO formation arising from an HJ-containing intermediate, consistent with HJ-dissolution. To study how CO products are generated, we have investigated the contribution of the following candidate HJ resolvases to the structures of CO events: Mus81, Yen1 and Rad1. The results suggest that Rad1 is important to normal CO formation in this assay, but Mus81 and Yen1 are largely dispensable. Together, this work advances our knowledge of how the NCO versus CO outcome is determined during HR, expanding our understanding of how mitotic recombination is regulated.</p> / Dissertation
19

CHK2 is Negatively Regulated by Protein Phosphatase 2A

Freeman, Alyson 31 May 2010 (has links)
Checkpoint kinase 2 (CHK2) is an effector kinase of the DNA damage response pathway and although its mechanism of activation has been well studied, the attenuation of its activity following DNA damage has not been explored. Here, we identify the B'α subunit of protein phosphatase 2A (PP2A), a major protein serine/threonine phosphatase of the cell, as a CHK2 binding partner and show that their interaction is modulated by DNA damage. B'α binds to the SQ/TQ cluster domain of CHK2, which is a target of ATM phosphorylation. CHK2 is able to bind to many B' subunits as well as the PP2A C subunit, indicating that it can bind to the active PP2A enzyme. The induction of DNA double-strand breaks by ionizing radiation (IR) as well as treatment with doxorubicin causes dissociation of the B'α and CHK2 proteins, however, it does not have an effect on the binding of B'α to CHK1. IR-induced dissociation is an early event and occurs in a dose-dependent manner. CHK2 and B'α can re-associate hours after DNA damage and this is not dependent upon the repair of the DNA. Dissociation is dependent on ATM activity and correlates with an increase in the ATM-dependent phosphorylation of CHK2 at serines 33 and 35 in the SQ/TQ region. Indeed, mutating these sites to mimic phosphorylation increases the dissociation after IR. CHK2 is able to phosphorylate B'α in vitro; however, in vivo, irradiation has no effect on PP2A activity or localization. Alternatively, PP2A negatively regulates CHK2 phosphorylation at multiple sites, as well as its kinase activity and protein stability. These data reveal a novel mechanism for PP2A to keep CHK2 inactive under normal conditions while also allowing for a rapid release from this regulation immediately following DNA damage. This is followed by a subsequent reconstitution of the PP2A/CHK2 complex in later time points after damage, which may help to attenuate the signal. This mechanism of CHK2 negative regulation by PP2A joins a growing list of negative regulations of DNA damage response proteins by protein serine/threonine phosphatases.
20

Mapping of UV-Induced Mitotic Recombination in Yeast

Yin, Yi January 2015 (has links)
<p>In diploid yeast cells, mitotic recombination is very important for repairing double-strand breaks (DSB). When repair of a DSB results in crossovers, it may cause loss of heterozygosity (LOH) of markers centromere-distal to the DSB in both daughter cells. Gene conversion events unassociated with crossovers cause LOH for an interstitial section of a chromosome. Alternatively, DSBs can initiate break-induced replication (BIR), causing LOH in only one of the daughter cells. Mapping mitotic LOH contributes to understanding of mechanisms for repairing DSBs and distribution of these recombinogenic lesions. Methods for selecting mitotic crossovers and mapping the positions of crossovers have recently been developed in our lab. Our current approach uses a diploid yeast strain that is heterozygous for about 55,000 SNPs, and employs SNP-Microarrays to map LOH events throughout the genome. These methods allow us to examine selected crossovers on chromosome V and unselected mitotic recombination events (crossovers, gene conversion events unassociated with crossovers, and BIR events) at about 1 kb resolution across the genome.</p><p>Mitotic recombination can be greatly induced by UV radiation. However, prior to my research, the nature of the recombinogenic lesions and the distribution of UV-induced recombination events were relatively uncharacterized. Using SNP microarrays, we constructed maps of UV-induced LOH events in G1-synchronized cells. Mitotic crossovers were stimulated 1500-fold and 8500-fold by UV doses of 1 J/m2 and 15 J/m2, respectively, compared to spontaneous events. Additionally, cells treated with 15 J/m2 have about eight unselected LOH events per pair of sectors, including gene conversions associated and unassociated with crossovers as well as BIR events. These unselected LOH events are distributed randomly throughout the genome with no particular hotspots; however, the rDNA cluster was under-represented for the initiation of crossover and BIR events. Interestingly, we found that a high fraction of recombination events in cells treated with 15 J/m2 reflected repair of two sister chromatids broken at roughly the same position. In cells treated with 1 J/m2, most events reflect repair of a single broken sister chromatid (Chapter 2). </p><p>The primary pathway to remove pyrimidine dimers introduced by UV is the nucleotide excision repair (NER) pathway. In NER, the dimer is excised to generate a 30-nucleotide gap that can be replicated to form DSBs if not filled in before DNA replication. The NER gap can also be expanded by Exo1p to form single stranded gaps greater than one kilobase. Alternatively, in the absence of NER, unexcised dimers could result in blocks of DNA replication forks. Resolving the stalled replication fork could lead to recombinogenic breaks. In Chapter 3 and Chapter 4, we analyzed recombination events in strains defective in various steps of processing of UV-induced DNA damage, including exo1 and rad14 mutants. </p><p>In Chapter 3, I show that Exo1p-expanded NER gaps contribute to UV-induced recombination events. Interestingly, I also found that Exo1p is also required for the hotspot activity of a spontaneous crossover hotspot involving a pair of inverted Ty repeats. In addition to its role of expanding a nick to a long single-stranded gap, Exo1p is also a major player in DSB end resection. Therefore, I examined the gene conversion tract lengths in strains deleted for EXO1. I found that, although crossover-associated gene conversion tracts become shorter in the exo1 mutant as expected, noncrossover tract lengths remained unaffected. As a result, noncrossover tracts are longer than crossover tracts in the exo1 mutant while the opposite result was observed in the wild-type strains. I proposed models to rationalize this observation.</p><p>In Chapter 4, to investigate whether the substantial recombinogenic effect in UV in G1-synchronized cells requires NER, we mapped UV-induced LOH events in NER-deficient rad14 diploids treated with 1 J/m2. Mitotic recombination between homologs was greatly stimulated, which suggests that dimers themselves can also cause recombination without processing by NER. We further show that UV-induced inter-homolog recombination events (noncrossover, crossover and BIR) depend on the resolvase Mus81p, and are suppressed by Mms2p-mediated error-free post-replication repair pathway. </p><p>The research described in Chapters, 2, 3, and 4 are in the publications Yin and Petes (2013), Yin and Petes (2014), and Yin and Petes (2015), respectively.</p> / Dissertation

Page generated in 0.172 seconds