• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rad18 and Rnf8 facilitate homologous recombination by two distinct mechanisms, promoting Rad51 focus formation and suppressing the toxic effect of nonhomologous end-joining / Rad18とRnf8は、2つの異なった機構(Rad51のフォーカス形成の促進及び非相同末端結合の毒性効果の抑制)によって相同組換えを促進する

Kobayashi, Shunsuke 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18879号 / 医博第3990号 / 新制||医||1008(附属図書館) / 31830 / 京都大学大学院医学研究科医学専攻 / (主査)教授 髙田 穣, 教授 平岡 眞寛, 教授 小松 賢志 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
2

Gene targeting at and distant from DNA breaks in yeast and human cells

Stuckey, Samantha Anne 02 April 2013 (has links)
Here we developed multiple genetic systems through which genetic modifications driven by DNA breaks caused by the I-SceI nuclease can be assayed in the yeast Saccharomyces cerevisiae and in human cells. Using the delitto perfetto approach for site-directed mutagenesis in yeast, we generated isogenic strains in which we could directly compare the recombination potential of different I-SceI variants. By genetic engineering procedures, we generated constructs in human cells for testing the recombination activity of the same I-SceI variants. Both in yeast and human cells we performed gene correction experiments using oligonucleotides (oligos) following modification and/or optimization of existing gene targeting protocols and development of new ones. We demonstrated that an I-SceI nicking enzyme can stimulate recombination on the chromosome in S. cerevisiae at multiple genomic loci. We also demonstrated in yeast that an I-SceI-driven nick can activate recombination 10 kb distant from the initial site of the chromosomal lesion. Moreover we demonstrated that an I-SceI nick can stimulate recombination at the site of the nick at episomal and chromosomal loci in human cells. We showed that an I-SceI double-strand break (DSB) could trigger recombination up to 2 kb distant from the break at an episomal target locus in human cells, though the same was not observed for the nick. Overall, we demonstrated the capacity for I-SceI nick-induced recombination in yeast and human cells. Importantly, our findings reveal that the nick stimulates gene correction by oligos differently from a DSB lesion, as determined by genetic and molecular analyses in yeast and human cells. This research illustrates the promise of targeted gene correction following generation of a nick.

Page generated in 0.0855 seconds