Spelling suggestions: "subject:"doubles perovskites"" "subject:"doubles pérovskite""
1 |
Effet magnétocalorique dans des couches minces de doubles pérovskites ferromagnétiquesMatte, Dominique January 2014 (has links)
La réfrigération magnétique est une alternative verte et théoriquement plus efficace que les systèmes de refroidissement classiques utilisant des cycles de détente/compression de gaz nocifs pour l'environnement comme les CFC et les HCFC. Malheureusement, les meilleurs matériaux utilisés actuellement dans les prototypes de réfrigération magnétique sont très dispendieux (5000$/kg pour le Gd) ce qui limite leur utilisation. La découverte de l'effet magnétocalorique géant en 1997 près de la température ambiante a fait exploser le nombre de publications dans le domaine. La recherche du matériau idéal était lancée. Les principales caractéristiques recherchées sont un grand effet magnétocalorique et une grande capacité réfrigérante. L'effet magnétocalorique correspond au changement d'entropie lors de l'application d'un champ magnétique. Elle est importante près des transitions magnétiques. Parmi les familles de matériaux étudiées pour leur effet magnétocalorique, on retrouve les manganites. Avec des structures cristallines apparentées, le La[indice inférieur]2NiMnO[indice inférieur]6 (LNMO) et le Pr[indice inférieur]2NiMnO[indice inférieur]6 (PNMO), des doubles pérovskites, possèdent des transitions magnétiques légèrement sous la température ambiante, soit 280 K et 212 K. De plus, le caractère isolant, la stabilité et le faible coût de ces matériaux leur procurent un net avantage pour leur intégration dans des systèmes de réfrigération magnétique.
Dans ce mémoire, la croissance par ablation laser pulsé de couches minces de doubles pérovskites (La[indice inférieur]2NiMnO[indice inférieur]6, Pr[indice inférieur]2NiMnO[indice inférieur]6) et d'hétérostructures de ces composés a été effectuée. Une caractérisation de la structure des échantillons à l'aide de la diffraction des rayons X a permis d'analyser les variations des paramètres de réseau en plan et hors plan en fonction de la température et de la pression d'oxygène lors de la croissance. La texture des couches a également été mesurée. La structure des échantillons a pu être mise en relation avec les propriétés magnétiques des matériaux. La variation de pression d'oxygène lors de la croissance permet de contrôler la proportion des phases ordonnée et désordonnée magnétiquement dans les échantillons de La[indice inférieur]2NiMnO[indice inférieur]6. L'aimantation à saturation ainsi que les températures de transition des phases ordonnée et désordonnée du LNMO sont obtenues à l'aide de mesures d'aimantation en fonction du champ magnétique et en fonction de la température respectivement.
L'effet magnétocalorique a été mesuré sur tous les échantillons pour des gammes de températures allant de 10 K à 320 K. La variation d'entropie maximale de 2,1 J/kgK pour un champ magnétique de 0-7T est obtenue pour l'échantillon à 300 mTorr. Par contre, la présence de la phase désordonnée dans certains échantillons élargit le pic de variation d'entropie en fonction de la température augmentant ainsi la capacité réfrigérante de l'échantillon. La capacité réfrigérante est alors comparable à celle du Gd[indice inférieur]5Ge[indice inférieur]2Si[indice inférieur]2. De plus, une variation d'entropie en forme de plateau sur une très large gamme de température (55 K à 298 K) maximise l'efficacité des cycles thermodynamiques. Un plateau s'étalant sur une aussi grande gamme de température n'avait jamais encore été observé. Une autre technique pour élargir le pic de variation d'entropie est de combiner deux matériaux possédant des transitions magnétiques rapprochées en température. Une bicouche de LNMO/PNMO et une tricouche de LNMO/LPNMO(LaPrNiMnO[indice inférieur]6)/PNMO ont donc été déposées. Un plateau de variation d'entropie a été obtenue sur une gamme de température allant de 152 K à 298 K. Par contre, des problèmes dans la croissance du LPNMO ont nui au magnétisme et réduit grandement l'effet magnétocalorique. La faible aimantation rémanente, le faible champ coercitif et la nature isolante des échantillons leurs procurent également un avantage pour une application dans un système de réfrigération magnétique.
|
2 |
Synthèses, études structurales et physiques de doubles pérovskites ordonnées NaLnCoWO6 : recherche de nouveaux composés multiferroïques basés sur la ferroélectricité hybride impropre / Synthesis, structural and physical studies of doubly ordered perovskite NaLnCoWO6 : pursuing new multiferroics based on hybrid improper ferroelectricityZuo, Peng 10 October 2017 (has links)
Ce travail porte sur la synthèse et la caractérisation de nouveaux matériaux multiferroïques basés sur le concept très récent de la Ferroélectricité Hybride Impropre.Deux classes de matériaux ont été envisagées : les oxydes de type Ruddlesden-Popper NaRMO4 (R=Y, La; M= Mn, Cr) et les doubles pérovskites ordonnées NaLnCoWO6 (Ln= Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb). Les essais de synthèse sur la première classe n’ont pas permis d’obtenir les composés visés. Pour la seconde classe, l’ensemble des composés ont pu être obtenus par synthèse par voie solide à haute température. Les composés NaLnCoWO6 (Ln=La, Pr, Nd) ont été synthétisés à pression ambiante. L’usage des techniques de Hautes Pressions – Hautes Températures (HP-HT) a permis de stabiliser les composés contenant des terres rares plus petites et d’obtenir ainsi neuf nouveaux composés aux propriétés inédites.L’utilisation combinée de la diffraction sur poudre des rayons X au synchrotron et des neutrons a permis une étude structurale fine de la famille des doubles pérovskites ordonnées NaLnCoWO6. Les groupes d’espace ont été déterminés grâce aux affinements Rietveld des diffractogrammes de Rayons X sur poudre haute résolution. Les composés NaLnCoWO6 (Ln=La, Pr, Nd) cristallisent dans le groupe d’espace centrosymétrique C2/m tandis que les 9 nouveaux composés (Ln= Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) cristallisent dans le groupe d’espace polaire P21. Des mesures de génération de seconde harmonique confirment la structure non-centrosymétrique des nouveaux composés. L’analyse adaptée des modes de symétrie des composés cristallisant dans la structure polaire montre que l’amplitude du mode polaire induit augmente avec la diminution de la taille du cation Ln3+. La polarisation estimée à partir des affinements de la structure pourrait atteindre jusqu’à ~20µC/cm2.Une transition de phase présentant une très large hystérésis en température (~150K) a été observée par diffraction des neutrons pour le composé NaLaCoWO6. De plus, les images obtenues en Microscopie Electronique en Transmission révèlent la présence de bandes dans la phase haute température. Cette superstructure présente une périodicité de 12ap selon la direction [100]p ou [010]p . On a pu montrer à l’aide d’observations en STEM (microscopie à balayage en transmission) combinées avec des mesures en EELS (spectroscopie de pertes d’énergie des électrons) que ce contraste de bandes n’est pas lié à une variation de composition mais bien à une variation structurale. Différents modèles de rotations des octaèdres d’oxygènes ont été élaborés pour valider les données expérimentales obtenues par diffraction des rayons X et de neutrons. Le schéma de rotation qui décrit au mieux les données est a-a-c0. Concernant la phase basse température le groupe d’espace attribué est le groupe polaire P21.Les caractérisations magnétiques ont été réalisées pour toutes ces phases. Tous les composés NaLnCoWO6 s’ordonnent dans une configuration antiferromagnétique. Les températures de Néel varient entre 4 et 13K en fonction de la nature de la terre-rare. Les moments effectifs déterminés par la loi de Curie-Weiss sont en accord avec les moments théoriques attendus. Toutes les températures de Weiss sont négatives traduisant le fait que les interactions antiferromagnétiques sont prépondérantes dans ces systèmes. Les structures magnétiques ont été déterminées pour les composés Ln= Y, La, Tb, and Ho. Pour ces mêmes composés, des mesures diélectriques en fonction de la température et du champ magnétique ont permis de mettre en évidence un couplage magnéto-diélectrique conséquent pour Ln=Y and Ho. Les mesures de courant pyroélectrique autour de la transition magnétique montrent qu’il existe une polarisation induite par l’ordre magnétique dans le composé NaYCoWO6.. C’est la première mise en évidence expérimentale d’un couplage magnéto-électrique dans la famille des doubles pérovskites ordonnées AA’BB’O6. / In this study, new magneto-electric materials were synthesized on the basis of the very recently recognized ferroelectric inducing mechanism, hybrid improper ferroelectricity, and structural and physical properties characterizations were carried out on these new phases.Two classes of materials were focused on: the Ruddlesden-Popper oxides NaRMO4 (R=Y, La; M= Mn, Cr) and the doubly ordered perovskites NaLnCoWO6 (Ln= Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb). Attempts to synthesize the former class failed to give the target phases. All compounds in the latter class were prepared successfully by solid-state reactions at high temperature, among which the compounds NaLnCoWO6 (Ln=La, Pr, Nd) were prepared at ambient pressure while the other nine compounds were synthesized at high pressure.The structural study of the doubly ordered perovskite family NaLnCoWO6 was performed by synchrotron X-ray powder diffraction (SXRPD) and neutron powder diffraction (NPD). Based on the Rietveld refinement of the SXRPD patterns, the space groups were assigned. NaLnCoWO6 (Ln=La, Pr, Nd) compounds crystallize in the centrosymmetric C2/m symmetry, whereas the other nine new compounds crystallize in the polar space group P21. Second harmonic generation measurements on powder confirmed the non-centrosymmetric structure of the new compounds. Symmetry mode analysis demonstrates that the amplitude of the induced polar mode increases with a decreasing Ln cation size. The amplitude of the polarization was estimated from the refined structures, and can be as large as ~20µC/cm2.A structural phase transition was observed by NPD in NaLaCoWO6 with a large temperature hysteresis of ~150K. In addition, stripes were observed on the high-resolution transmission electron microscopy (TEM) images in the high temperature phase. The periodicity of this superstructure is 12ap along either the [100]p or [010]p direction. Further investigations by scanning TEM and electron energy loss spectroscopy revealed that the contrast of the stripes is due to a structural modulation rather than a compositional variation. Octahedral tilt twinning models were built with different tilting schemes to fit the observed SXRPD and NPD patterns. The tilting scheme a-a-c0 describes successfully the data. The low temperature phase was unambiguously determined to possess the polar space group P21.Magnetic and electric properties were experimentally characterized. All NaLnCoWO6 compounds order antiferromagnetically below TN which is between 4 and 13K. Curie-Weill fits were performed for all compounds, yielding reasonable effective magnetic moments compared to the theoretical ones. Weiss temperatures were all determined to be negative further indicating that antiferromagnetic interactions are dominant in these systems. Magnetic structures were determined for four NaLnCoWO6 (Ln= Y, La, Tb, and Ho) compounds, of which two have non-magnetic Ln cations (Y and La) and two have magnetic ones (Tb and Ho). Magneto-dielectric coupling was experimentally observed in compounds NaLnCoWO6 (Ln=Y, Tb, Ho) by dielectric measurements as a function of temperature and magnetic field. Polarization was derived for the Y and Ho compounds from pyroelectric current measurement, however, only the NaYCoWO6 compound demonstrates a polar behavior which cannot be switched. This is the first evidence that electric polarization can be induced by the magnetic ordering in the AA’BB’O6 class materials.
|
Page generated in 0.0633 seconds