• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 423
  • 30
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 481
  • 481
  • 84
  • 49
  • 34
  • 32
  • 29
  • 26
  • 26
  • 25
  • 24
  • 23
  • 23
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Inter-relationships of vegetation, hydrology and micro-climate in a young, Douglas-fir forest /

Barnard, Holly Renʹe. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 116-126). Also available on the World Wide Web.
432

Ionic balance and the constituent organic acids of current-year foliage of western redcedar, western hemlock, and Douglas-fir seedlings /

Graff, Joseph Edward. January 1993 (has links)
Thesis (Ph. D.)--Oregon State University, 1994. / Typescript (photocopy). Includes bibliographical references (leaves 109-125). Also available on the World Wide Web.
433

Assessing and promoting windfirmness in conifers in British Columbia

Mitchell, Stephen Jarvis, January 1999 (has links) (PDF)
Thesis (Ph. D.)--University of British Columbia, 1999. / Includes bibliographical references (leaves 172-180).
434

Effects of root growth and physiology on drought resistance in Douglas-fir, lodgepole pine, and white spruce seedlings

Smit, Julie 10 July 2018 (has links)
Two aspects of drought resistance were investigated on wet and dry ecotypes of three conifer species: 1) the relative importance of drought avoidance and drought tolerance mechanisms in resisting drought stress was assessed on Douglas-fir (Pseudotsuga menzieseii) and lodgepole pine (Pinus contorta) seedlings, and 2) the effects of drought on root hydraulic conductance and low temperature, on root water flow rates Were assessed on first-year seedlings of Douglas-fir, lodgepole pine and white spruce (Picea glauca). To study drought avoidance, Douglas-fir and lodgepole pine seedlings were grown in sealed containers in wet (522% water content) or dry (318% water content) peat/vermiculite soil in a factorial treatment design. Dry weights, water use, and root length were determined for seedlings at each of five harvests and stomatal conductance and shoot water potentials were measured during the last 12 weeks of the experiment. Lodgepole pine seedlings had greater dry matter production, water use, stomatal conductance and new root length than Douglas-fir seedlings. New root weight of lodgepole pine seedlings exceeded that of Douglas-fir seedlings during the last five weeks of the experiment, and specific root length of new roots was higher for lodgepole pine seedlings throughout the experiment. Douglas-fir seedlings showed higher water use efficiency (WUE) than lodgepole pine seedlings, although water uptake rates per unit of root dry weight showed little difference between species. Soil water treatment influenced specific root length of new roots, water uptake per unit of new root length, and WUE in Douglas-fir seedlings more than in lodgepole pine seedlings. To study drought tolerance, Douglas-fir and lodgepole pine seedlings were grown under drought and well-watered conditions. At each of three harvests a pressure-volume curve was produced for each seedling. Douglas-fir maintained a lower osmotic potential at full saturation [special characters omitted] and lower turgor loss point [special characters omitted] than lodgepole pine under both watering regimes,. Both species had lower [special characters omitted] when drought-stressed. Douglas-fir appears to be a more conservative species, maintaining low stomatal conductance and tolerating drought conditions, whereas lodgepole pine avoids drought by producing large amounts of roots to exploit the soil resource. To study root hydraulic conductance (Lproot) and water flow rates through roots (WFRR), water flow was measured through de-topped roots of Douglas-fir, lodgepole pine, and white spruce seedlings in a pressure chamber. In a drought experiment, seedlings were grown in sandy soil in a greenhouse under drought and well-watered conditions during their first growing season and, in a low temperature experiment, seedlings were grown in sandy soil in growth chambers at 25/20°C (day/night) and 15/10°C, In the drought experiment, water flow through roots was measured at three pressures. No differences in Lproot were found for Douglas-fir and white spruce seedlings grown under the two watering regimes, however, lodgepole pine seedlings had reduced Lproot when grown under drought conditions. Welk watered seedlings of lodgepole pine and white spruce had higher Lpr00t in 1989 than in 1990 whereas Douglas-fir seedlings had the same Lproot in both years. In the low temperature experiment, WFRR was measured at 1.0 MPa and temperatures of 20°C for 24 hours or 20°, 12°, and 4°C for 18, 15, and 15 hours respectively. At 20°C, white spruce seedlings had higher WFRR than the other two species. Lodgepole pine and white spruce seedlings grown in the 1S°/10°C growth chamber had higher WFRR than seedlings grown in the 25°/20°C growth chamber. Water flow rate decreased with temperature in all three species. After correcting for viscosity, all seedlings had lower WFRR with reduced temperature, except for Douglas-fir and white spruce seedlings grown at 15°/10°C which had the same WFRR at 20°C and 12°C. Therefore, Douglas-fir and white spruce seedlings were found to become less sensitive to low temperature (chilling) stress when pre-conditioned at low temperatures. In the drought and low temperature studies, dry weight biomass of white spruce was lowest but white spruce had a greater specific root length than lodgepole pine and Douglas-fir. In the drought study, biomass production in seedlings from wet ecotypes of each species was more reduced when drought-stressed than seedlings from dry ecotypes. / Graduate
435

An analysis of the growth of young stands of western red cedar and associated species on the University of British Columbia research forest, Haney, British Columbia

Osborn, John Edward January 1966 (has links)
Breast height radial growth of 165 western red cedar (Thuja plicata Donn), 14.5 western hemlock (Tsuga heterophylla (Raf.) Sarg.) and 33 Douglas fir trees (Pseudotsuga menziesii (Mirb.) Franco), in young natural stands on the eastern side of the University of British Columbia Research Forest near Haney, B.C. was analysed. Individual tree parameters measured included breast height diameter, total height, age at breast height, radial growth over last five and ten years, crown width, live crown length, tree class, live crown ratio, height/age ratio, crown width/breast height diameter ratio, and height/ crown width. Stand parameters measured were number of trees per plot, average breast height diameter of plot, and basal area per acre of plot. Plots were of variable radius as determined in prism cruising. Growth was investigated from results of simple correlation coefficients and several multiple regression analyses computed on an IBM 7040. Causes of variation in growth were assessed by studying interaction of variables affecting growth patterns. Individual species have distinctly different modes of growth. Species react differently to changes in stand density. Radial growth can be determined from measurements of tree crowns; and crown development reflects changes in stand density. Difference between species are found as crown development varies with stand density changes. Crown dimensions of western hemlock are least sensitive to changes in stand density as measured by basal area per acre, crown width/breast height diameter, live crown ratio, or height/crown width. An understanding of how crown dimensions change with variation in stand density can be used to refine predictions of tree radial growth derived from crown measurements. / Forestry, Faculty of / Graduate
436

The effects of slashburning on the growth and nutrition of young Douglas-fir plantations in some dry, salal-dominated ecosystems

Vihnanek, Robert E. January 1985 (has links)
Twenty Douglas-fir plantations, ranging from 5 to 15 years old, were examined on the east side of Vancouver Island. In all areas studied, salal was the dominant ground cover, and was suspected of being a major competitor with trees for water and nutrients. In each plantation, part of the area has been burned and part was unburned. Stocking of planted Douglas-firs was found to be greater on the burned than on the unburned areas of 16 sites and height growth of planted Douglas-firs was greater on the burned than on the unburned areas of 18 sites. Some degree of nitrogen deficiency was inferred for 17 sites, but was not attributed to burning. Height and percent cover of salal was greater on unburned areas. Differences in height growth and percent cover of salal between burned and unburned areas were seen to be greatest where inferred burn severity was high. Browsing of Douglas-fir was more prevalent on burned areas but did not result in height growth being less than on adjacent unburned areas. / Forestry, Faculty of / Graduate
437

Some effects of variation in weather and soil water storage on canopy evapotranspiration and net photosynthesis of a young douglas-fir stand

Price, David Thomas January 1987 (has links)
Measurements of the energy balances and net photosynthesis rates of two low productivity coniferous forest canopies (12 and 22 years old), were made successfully during both wet and dry growing seasons, using a modified Bowen Ratio method. Canopy conductances (gc) were calculated from canopy evaporation rates (E) using the Penman-Monteith equation. A model was developed to predict canopy growth and evaporation rates from basic soil and weather data, and compared with the measured data. The photosynthesis model was physiologically based, derived from recent work of Farquhar and coworkers. The canopy conductance model used an empirical approach, based on simple relationships with recorded environmental variables, while canopy E was predicted from the Penman-Monteith equation. Findings were: (1) Daytime E and canopy net photosynthesis rates (Fc) were generally lower in the younger canopy. (2) In the old canopy, E was more strongly decoupled from net irradiance (Rn) and more dependent on the atmospheric vapour pressure deficit (D) in accordance with the predictions of McNaughton and Jarvis (1983). (3) In the old canopy, Fc was significantly reduced by low soil water potential (Ψs) within the range of soil water storages at which measurements were made, while gc was less dependent on Ψs. From consideration of changes in intercellular C0₂ concentration, gc was not found normally limiting to Fc. (4) No simple relationship was apparent between solar irradiance (S) and F at the canopy level. However highest Fc and canopy water use efficiency ratios occurred on cloudy days with low air temperature and low D. (5) Night-time Fc measurements indicated that canopy respiration rates are generally very high and hence air temperature was a major factor limiting overall forest productivity. (6) The computer model could predict gc from four variables (D, S, root-zone soil water storage, W and time since dawn, t) with reasonable 2 success (r² 0.75). However, on days when gc was low, due to high D, E was occasionally significantly in error, because the Penman-Monteith equation is more sensitive to gc when the latter is low. Best agreement between measured and modelled E occurred on cloudy days when D was low and gc consequently high. (7) Values for the maximum rates of carboxylation, as limited by foliar carboxylase activity and electron transport rate, were set at one third of those reported by Farquhar and coworkers, in order to obtain best overall agreement between measured and modelled data. This requirement indicated that poor nutrition was also limiting to stand productivity. (8) Model prediction of canopy net photosynthesis was not satisfactory (r² 0.50), attributed mainly to using too simple an approach to estimating irradiance at the individual leaf level, and partly to unexplained variation in the measurements of Fc. In spite of its limitations, the model was found to respond realistically to changes in weather and Ψs, suggesting the approach was valid, and might be more successful with further development. / Forestry, Faculty of / Graduate
438

Bark Beetle Activity in Douglas-Fir, <i>Pseudotsuga menziesii var. glauca</i> Mirb. (Franco), Following the 1994 Beaver Mountain Fire

Cunningham, Catherine A. 01 May 1997 (has links)
The 1994 Beaver Mountain fire ignited the canopies of subalpine fir, Abies lasiocarpa, and spread ground fire into adjacent Douglas-fir forests, Pseudotsuga menziesii var. glauca. Despite shorter flight seasons due to lower annual temperatures and persistent snow, the Douglas-fir bark beetle, Dendroctonus pseudotsugae Hopkins, attacked a range of moderately fire-injured host conifers. Logistic regression models illustrated that in 1995 associated bark beetles selected large diameter Douglas-fir with 60-80% bole char, 60-80% crown volume scorch, and 50-70% probability of mortality due to fire. In 1996 beetle preference shifted to smaller diameter trees with lighter fire injury. Tree size was less significant for predicted attack in 1996 because most large fire-damaged conifers were colonized by beetles in 1995. Beetle populations did not reach outbreak proportions outside the fire boundary, but 53 green trees were also infested in 1997 along the burn perimeter. Log linear tests conducted to quantify beetle emergence supported conclusions that beetles were not only attracted to mature, moderately fire-weakened conifers, but also produced greater brood numbers with up to 60-80 emergence holes/ 1800 cm2. Fire-defoliated trees provided bark beetles with sufficient phloem and limited resistance, allowing beetles to aggregate on areas of viable stem tissue regardless of overall bole char extent.
439

Adsorption of Sulfur Dioxide on Douglas Fir Woodchips

Wang, Uen-Ping David 20 December 1971 (has links)
In recent years, people have raised their alertness to the hazard of air pollution. Sulfur dioxide is one of the most dangerous chemical compounds among those air pollutants. A study on removing sulfur dioxide from an air stream by adsorption using wood chips as the adsorbent is presented in this thesis. The reason for using wood as an adsorbent is that wood is a porous material and possesses a large surface of cell cavities which can hold a great amount of moisture. As sulfur dioxide gas is passed through the wood bed, it would be either condensed in the cell space of the wood by intermolecular attraction, adsorption or dissolved in the moisture held in the wood. This work was started with a review of literature. Then related references were collected and a proposal written. Douglas fir was chosen for the experiment because it is the most common kind of wood in the Pacific Northwest. After the process and proper equipment was set up, woodchips were screened and dried to prepare for further experiments. It was decided to use three different concentrations of sulfur dioxide. For each of the concentrations of sulfur dioxide, five levels of moisture (0%', 11%, 20%, 50% and saturated) were assigned to the selected woodchips. Fifteen combinations or experiments were done for the research. The results of the experiments show that dry wood (0% moisture content) had comparatively low characteristics in the adsorption of sulfur dioxide. For instance, at an influent so2 concentration of 1.12 ppm., about· 6 grams of dry woodchips adsorbed 29.37 µg. of sulfur dioxide in comparison to 2Q90.5 µg. of SO2 adsorbed in the same weight of woodchips but saturated with moisture. At an influent SO2 concentration of 1.83 ppm., the adsorption of sulfur dioxide increased from 7.73 µg. for the dry wood to 745.15µg. in the water saturated wood. For an influent SO2 concentration of 4.60ppm., dry wood adsorbed 15.26 µg. of SO2 while the moisture saturated wood adsorbed 1446.2 µg. The amount of dry woodchips used in above mentioned experiments were all about 6 grams. These data show that the moisture saturated wood adsorbed about 90 times the amount of sulfur dioxide that the dry wood adsorbed. It is clear that the wood adsorptivity increased with increasing moisture content. It was also found that wood adsorptivity and retention time were affected by the different flow rate of carrier gas. The figures show that most of the data fit a Freundlich equation. Other equations were developed to calculate the adsorptivity and retention time by obtaining the influent and effluent concentration of sulfur dioxide through the adsorbent bed.
440

Assessing the contribution of Red Alder (Alnus rubra) to forest stand nitrogen budgets

Nehring, Lise 29 September 2022 (has links)
Red Alder (Alnus rubra) is a native coastal hardwood in British Columbia and has evolved a symbiotic relationship with the nitrogen-fixing actinomycete, Frankia. This research uses δ15N signatures in soils, wood and litter to assess the contribution of nitrogen-fixing Red Alder to the components of stand nitrogen budgets. The stands used in this study are part of the B.C. Ministry of Forests’ long-term Experimental Project 1121.01 which examines the interactions between conifers and Red Alder. Planted in 1994, the Holt Creek site contains stands of Douglas-fir and Red Alder in five proportions (Red Alder: Douglas-fir proportions: 100/0, 50/50, 25/75, 11/89, 0/100). Increment cores from 5 trees per species per plot were taken along with soil and litter samples and analyzed for essential mineral elements and δ15N. I hypothesized that Red Alder would enhance soil nitrogen stocks and elevate δ15N signatures and that these changes would be observable in the δ15N signature of the tree rings of both species. Forest floor soil under Red Alder in the 100/0 plot was enriched in total nitrogen, and δ15N was elevated. This was due to the addition of nitrogen-rich litter, like followed by nitrogen discrimination in the forest floor during the process of nitrate leaching or denitrification. The litter of the two species did not differ in δ15N. The effect of forest floor nitrogen enrichment was visible in the tree rings of Douglas-fir in the 50/50 stand confirming that the effect of fixed-nitrogen can be observed in non-fixing species. Red Alder tree ring δ15N exhibited an unexpected non-linear relationship with time that could be due to reduced nitrogen fixation associated with declining tree vigour or negative feedback from low soil pH. This research provides insight into nitrogen fixation by Red Alder over time and its influence on pure and mixed stand nitrogen budgets. / Graduate / 2023-09-09

Page generated in 0.0545 seconds